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Bayesian Portfolio Analysis

This paper reviews the literature on Bayesian portfolio analysis. Information about events,
macro conditions, asset pricing theories, and security-driving forces can serve as useful priors in
selecting optimal portfolios. Moreover, parameter uncertainty and model uncertainty are prac-
tical problems encountered by all investors. The Bayesian framework neatly accounts for these
uncertainties, whereas standard statistical models often ignore them. We review Bayesian portfolio
studies when asset returns are assumed both independently and identically distributed as well as
predictable through time. We cover a range of applications, from investing in single assets and

equity portfolios to mutual and hedge funds. We also outline existing challenges for future work.
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1 Introduction

Portfolio selection is one of the most important problems in practical investment management.
First papers in the field go back at least to the mean variance paradigm of Markowitz (1952)
which analytically formalizes the risk return tradeoff in selecting optimal portfolios. Even when
the mean variance is a static one-period model it has widely been accepted by both academics and
practitioners. The latter developed intertemporal Capital Asset Pricing Model of Merton (1973)
already accounts for the dynamic multi-period nature of investment-consumption decisions. In
an intertemporal economy, the overall demand for risky assets consists of both the mean variance
component as well as a component hedging against unanticipated shocks to time varying investment
opportunities. Empirically, for a wide variety of preferences, hedging demands for risky assets are

typically small, even nonexistent [see also Ait-Sahalia and Brandt (2001) and Brandt (2009)].

We review Bayesian studies of portfolio analysis. The Bayesian approach is potentially attrac-
tive. First, it can employ useful prior information about quantities of interest. Second, it accounts
for estimation risk and model uncertainty. Third, it facilitates the use of fast, intuitive, and easily
implementable numerical algorithms in which to simulate otherwise complex economic quantities.
There are three building blocks underlying Bayesian portfolio analysis. The first is the formation
of prior beliefs, which are typically represented by a probability density function on the stochastic
parameters underlying the stock return evolution. The prior density can reflect information about
events, macroeconomy news, asset pricing theories, as well as any other insights relevant to the
dynamics of asset returns. The second is the formulation of the law of motion governing the evo-
lution of asset returns. Then, one could recover the predictive distribution of future asset returns,
analytically or numerically, incorporating prior information, law of motion, as well as estimation
risk and model uncertainty. The predictive distribution, which integrates out the parameter space,
characterizes the entire uncertainty about future asset returns. The Bayesian optimal portfolio rule

is obtained by maximizing the expected utility with respect to the predictive distribution.

Zellner and Chetty (1965) pioneer the use of predictive distribution in decision-making in gen-
eral. First applications in finance appear during the 1970s. Such applications are entirely based on
uninformative or data based priors. Bawa, Brown, and Klein (1979) provide an excellent survey

on such applications. Jorion (1986) introduces the hyperparameter prior approach in the spirit of



the Bayes-Stein shrinkage prior, while Black and Litterman (1992) advocate an informal Bayesian
analysis with economic views and equilibrium relations. Recent studies of Péstor (2000) and Pastor
and Stambaugh (2000) center prior beliefs around values implied by asset pricing theories. Tu and

Zhou (2009) argue that the investment objective itself provides a useful prior for portfolio selection.

Whereas all above-noted studies assume that asset returns are identically and independently
distributed through time, Kandel and Stamabugh (1996), Barberis (2000), and Avramov (2002),
among others, account for the possibility that returns are predictable by macro variables such as
the aggregate dividend yield, the default spread, and the term spread. Incorporating predictability

provides fresh insights into asset pricing in general and Bayesian portfolio selection in particular.

Indeed, we review Bayesian portfolio studies when asset returns are assumed to (i) be indepen-
dently and identically distributed, (ii) be predictable through time by macro conditions, as well as
(iii) exhibit regime shifts and stochastic volatility. We cover a range of applications, from investing
in the market portfolio, equity portfolios, and single stocks to investing in mutual funds and hedge

funds. We also outline existing challenges for future work.

The paper is organized as follows. Section 2 reviews Bayesian portfolio analysis when asset
returns are independent and identically distributed through time. Section 3 surveys studies that
account for potential predictability in asset returns. Section 4 discusses alternative return gener-

ating processes. Section 5 outlines ideas for future research, and Section 6 concludes.

2 Asset Allocation when Returns are 11D

Consider N + 1 investable assets, one of which is riskless and the others are risky. Risky assets
may include stocks, bonds, currencies, mutual funds, and hedge funds. Denote by ry; and r; the
returns on the riskless and risky assets at time ¢, respectively. Then, Ry = ry — rply is an N
dimensional vector of time ¢ excess returns on risky assets, where 1y is an N-vector of ones. The

joint distribution of R; is assumed IID through time with mean p and covariance matrix V.

For analytical insights, it would be beneficial to review the mean-variance framework pioneered

by Markowitz (1952). In particular, consider an optimizing investor who chooses at time 7" portfolio



weights w so as to maximize the quadratic objective function

U(w) = E[R,| — %Var[Rp] =w'p— %w'Vw, (1)

where E and Var denote the mean and variance of the uncertain portfolio rate of return R, =
w' Ry 1 to be realized in time T+ 1, and + is the relative risk aversion coefficient. It is well-known

that, when both p and V' are known, the optimal portfolio weights are given by

|

w'=-V""p, (2)

Y
and the maximized expected utility is
— 3
- 3)
where % = 1/V ! is the squared Sharpe ratio of the ex ante tangency portfolio of the risky assets.

In practice, it is impossible to compute w* because p and V are essentially unknown. Thus,
the mean-variance theory can be applied in two steps. In the first step, the mean and covariance
matrix of asset returns are estimated based on the observed data. Specifically, given a sample of T’

observations on asset returns, the standard maximum likelihood estimators are

1 T
po=m B )
A lt;l
Vo= 5 (B )R- ) (5)
t=1

Then, in the second step, these sample estimates are treated as if they were the true parameters,

and are simply plugged into (2) to compute the estimated optimal portfolio weights

WME = 117—1,3. (6)

8
Of course, the two-step procedure gives rise to a parameter uncertainty problem because it is
the estimated parameters, not the true ones, which are used to compute optimal portfolio weights.
Consequently, the utility associated with the plug-in portfolio weights can be substantially different
from the true utility, U(w*). In particular, denote by 6 the vector of the unknown parameters p

and V. Mathematically, the two-step procedure maximizes the expected utility conditional on the

estimated parameters, denoted by é, being equal to the true ones

max[U (w) |6 = 6]. (7)

w

Thus, estimation risk is altogether ignored.



2.1 The Bayesian Framework

The Bayesian approach treats 6 as a random quantity. One can only infer its probability distri-
bution function. Following Zellner and Chetty (1965), the Bayesian optimal portfolio is obtained
by maximizing the expected utility under the predictive distribution. In particular, the utility

maximization is formulated as

wBwes = argmaxw/ U(w) p(Rr41|®7) dRr41
Rpiq
= argmax, / / / U(w) p(Rya1, 1, V|®7) dudVd Ry 1, (8)
Ry JpJV

where U(w) is the utility of holding a portfolio w at time 7'+ 1 and ®7 is the data available at
time T'. Moreover, p(Rp41|®7) is the predictive density of the time 7'+ 1 return, which integrates
out p and V from

p(Rri1, 1, VI|®r) = p(Rrialp, V, @) p(p, VI®1), (9)

where p(u, V|®7) is the posterior density of p and V. To compare the classical and Bayesian
formulations in (7) and (8), notice that the expected utility is maximized under the conditional and
predictive distributions, respectively. Unlike the conditional distribution, the Bayesian predictive
distribution accounts for estimation errors by integrating out the unknown parameter space. The

degree of uncertainty about the unknown parameters will thus play a role in the optimal solution.

To get better understanding of the Bayesian approach we consider various specifications for
prior beliefs about the unknown parameters. We start with the standard diffuse prior on p and V.

The typical formulation is given by
_N+41
po(p, V) o [V[7727. (10)

Then assuming that returns on risky assets are jointly normally distributed, the posterior distribu-

tion is given by (see, e.g., Zellner (1971)),

p(p, V|®r) =p(p |V, @7) x p(V | 1) (11)

with
p(p|V, ®7) o !V|_1/2GXP{*%U"[T(M — ) (u— )V, (12)
P(V) x yvr%exp{—%trvﬂ(w)}, (13)

4



where ‘tr’ denotes the trace of a matrix and v = T 4+ N. Moreover, the predictive distribution

obeys the expression

p(Rr1|®7) o |V + (Rps1 — i)(Rrsy — ) /(T +1)] /7, (14)

which amounts to a multivariate t-distribution with 7' — N degrees of freedom.

The problem of estimation error is already recognized by Markowitz (1952). Nevertheless,
this problem receives serious attention only during the 1970s. Winkler (1973) and Winkle and
Barry (1975) are earlier examples of Bayesian studies on portfolio choice. Brown (1976, 1978) and
Klein and Bawa (1976) lay out independently and clearly the Bayesian predictive density approach,
especially Brown (1976) who explains thoroughly the estimation error problem and the associated
Bayesian approach. Later, Bawa, Brown, and Klein (1979) provide an excellent review of the

literature.

Under the diffuse prior, (10), it is known that the Bayesian optimal portfolio weights are
1 /T —-N-2)\ -
~Bayes __ — V—l . 15
v vy < T+1 > K (15)

Similar to the classical solution M

, an optimizing Bayesian agent holds the portfolio that is
also proportional to %f/’*lﬂ, with the coefficient of proportion being (T'— N — 2)/(T + 1). This
coefficient can be substantially smaller than one when N is large relative to 7. Intuitively, the
assets are riskier in a Bayesian framework since parameter uncertainty is an additional source of
risk and this risk is accounted for in the portfolio decision. As a result, in the presence of a risk-free

security the overall positions in risky assets are generally smaller in the Bayesian versus classical

frameworks.

However, the Bayesian approach based on diffuse prior does not yield significantly different

ML

portfolio decisions compared with the classical framework. In particular, ™" is a biased estimator

of w* | whereas the classical unbiased estimator is given by

1T—N—-2._
o1 -1, 16
W=V (16)

which is a scalar adjustment of WML, and differs from the Bayesian counterpart only by a scalar
T/(T+1). The difference is independent of N, and is negligible for all practical sample sizes. Hence,

incorporating parameter uncertainty makes little difference if the diffuse prior is used. Indeed, to



exhibit the decisive advantage of the Bayesian portfolio analysis, it is essential to elicit informative
priors which account for events, macro conditions, asset pricing theories, as well as any other

insights relevant to the evolution of stock prices.
2.2 Performance Measures

How can one argue that an informative prior is better than the diffuse prior? In general, it is
difficult to make a strong case for a prior specification, because what is good or bad has to be
defined and the definition may not be agreeable among investors. Moreover, ex ante, it is difficult

to know which prior is closer to the true data-generating process.

Following McCulloch and Rossi (1990), Kandel and Stambaugh (1996) and Péstor and Stam-
baugh (2000), among others, focus on utility differences for motivating a performance metric. To
illustrate, let w, and w; be the Bayesian optimal portfolio weights under priors a and b, and let U,
and Uy be the associated expected utilities evaluated by using the predictive density under prior a.

Then the difference in the expected utilities,
CER=U, — Uy, (17)

is interpreted as the certainty equivalent return (CER) loss perceived by an investor who is forced
to accept the portfolio selection w, even when @, would be the ultimate choice. The CER is
nonnegative by construction. Indeed, the essential question is how big this value is. Generally

speaking, values over a couple of percentage points per year are deemed economically significant.

However, it should be emphasized that the CER does not say prior a is better or worse than
prior b. It merely evaluates the expected utility differential if prior b is used instead of prior a,
even when prior a is perceived to be the right one. Recall, the true model is unknown, and neither

is known which one of the priors is more informative about the true data-generating process.

Following the statistical decision literature (see, e.g., Lehmann and Casella (1998)), we can
nevertheless use a loss function approach to distinguish the outcomes of using various priors. The
prior that generates the minimum loss is viewed as the best one. In the portfolio choice problem
here, the loss function is well defined. Since any estimated portfolio strategy, w, is a function of

the data, the expected utility loss from using w rather than w* is

p(w*, @], V) = U(w") — B[U(@)|u, V], (18)



where the first term on the right hand side is the true expected utility based on the true optimal
portfolio. Hence, p(w*,w|u, V') is the utility loss if one plays infinite times the investment game
with @, whether estimated via a Bayesian or a non-Bayesian approach. In particular, the difference

in expected utilities between any two estimated rules, w, and w;, should be

Gain = E[U(w,)|p, V] — E[U (wp) |, V1. (19)

This is an objective utility gain (loss) of using portfolio strategy w, versus wj. It is considered
to be an out-of-sample measure since it is independent of any single set of observations. If it is, say
5%, it means that using w, instead of 1w, would yield a 5% gain in the expected utility over repeated
use of the estimation strategy. In this case, if w0, is obtained under prior a and wp is obtained under
prior b, one could consider prior a to be superior to prior b. The loss or gain criterion is widely
used in the classical statistics to evaluate two estimators. Brown (1976, 1978), Jorion (1986), Frost

and Savarino (1986), and Stambaugh (1997), for example, use p(w*,w) to evaluate portfolio rules.

Still, one cannot compute the loss function since it depends on unknown true parameters. Even
though, it is widely used in two major ways. First, alternative estimators can be assessed in
simulations with various assumed true parameters. Second, a comparison of alternative estimators
can often be made analytically without any knowledge of the true parameters. For example, Kan
and Zhou (2007) show that the Bayesian solution @wB®° dominates w given in Equation (16), by
having positive utility gains regardless of the true parameter values. However, the Bayesian solution
is yet dominated by another classical rule,

(T—N-1)(T—-N —4)

S, e= T —9) . (20)

This calls again for the use of informative priors in Bayesian portfolio analysis.

2.3 Conjugate Prior

The conjugate prior, which retains the same class of distributions, is a natural and common in-
formative prior on any problem in decision making. In our context, the conjugate specification

considers a normal prior for u (conditional on V') and inverted Wishart prior for V. The conjugate



prior is given by

1
PV~ N, —V), (21)
Vo~ IW (Vo) (22)

where pg is the prior mean, 7 is a parameter reflecting the prior precision of 1, and vq is a similar
prior precision parameter on V. Under this prior, the posterior distribution of u and V' obey the
same form as that based on the diffuse prior, except that now the posterior mean of u is given by

the mixture

T T
. 3 23
S A (23)

That is, the posterior mean is simply a weighted average of the prior and sample means. Similarly,
Vb can be updated by

7 — T+1 ~ TT . -
V= Tt N =) <V°+TV+T+T(MO 1) (1o u)>, (24)

which is a weighted average of the prior variance, sample variance, and deviations of i from .
Frost and Savarino (1986) provide an interesting application of the conjugate prior, assuming
all assets exhibit identical means, variances, and patterned covariances, a priori. They find that

such a prior improves ex post performance. This prior is related the well known 1/N rule that

invests equally across the N assets.

2.4 Hyperparameter Prior

Jorion (1986) introduces hyperparameters n and A that underlie the prior distribution of p. In

particular, the hyperparameter prior is formulated as

ol 1, 0) o [V] ™ exp{= 5 — min Y V) ™~ i)} (25)

Then employing diffuse priors on both n and A and integrating these parameters out from a suitable
distribution, the predictive distribution of the future portfolio return can be obtained following

Zellner and Chetty (1965). In particular, the Jorion’s optimal portfolio rule is given by

Wb —

(VPH Tk, (26)

=2 |+~



where

pro= (- @)ﬂ + 0figln, (27)

N 3 1 1/
Pl (1 ) N A Wy N (28)

T+ X T(T+1+ N1Vl
N 42

b = _ _ 29
(N +2) + T(ft — figln)'V =1 — figln) (#9)
A= (N +2)/[(h = i) Vi = figln)), (30)
V = TV/(T—N-2), (31)
fg = VTRV (32)

This hyperparameter portfolio rule can be motivated based on the following Bayes-Stein shrink-

age estimator [see, e.g., Jobson, Korkie, and Ratti (1979)] of expected return

AP = (1= 0)fi+vpgly, (33)

where p,1y is the shrinkage target, py, = 1V "1u/1 V" 1y, and v is the weight given to the
target. Jorion (1986) as well as subsequent studies find that w®’ improves wM! substantially,

implying that it also outperforms the Bayesian strategy based on the diffuse prior.

2.5 The Black-Litterman Model

The Markowitz’s portfolio rule @wM¥ typically implies unusually large long and short positions in
the absence of portfolio constraints. Moreover, it delivers many zero positions when short sales are
not allowed. Black and Litterman (1992) provide a novel solution to this problem. They assume
that the investor starts with initial views on the market, then updates those views with his own
views via the Bayesian rule. For instance, if the market views are based on the CAPM the implied
portfolio is the value-weighted index. Then, if the investor has views identical to the market, the

market portfolio will be the ultimate choice.

However, what if the investor has different views? Black and Litterman (1992) propose a way
to update market views with the investor own views. Let us formalize the Black Litterman model.

Based on market views, expected excess returns are given by

ué = yVwe, (34)



where w, denotes the value-weighted weights in the stock index and ~ is the market risk-aversion

coefficient. Assume that the true expected excess return p is normally distributed with mean p°,
pw=ps+e, € ~N(07TV), (35)

where €, the deviation of i from u€, is normally distributed with zero mean and covariance matrix
7V with 7 being a scalar indicating the degree of belief in how close p is to the equilibrium value u€.
In the absence of any views on future stock returns, and in the special case of 7 = 0, the investor’s

portfolio weights must be equal to we, the weights of the value-weighted index.

Black and Litterman (1992) consider views on the relative performance of stocks that can be

represented mathematically by a single vector equation,
Pu=p"+¢€, EUNN(OvQ)7 (36)

where P is a K x N matrix summarizing K views, u is a K-vector summarizing the prior means
of the view portfolios, and € is the residual vector. The views may be formed based on news,
events, or analysis on the economy and investable assets. The covariance matrix of the residuals,
), measures the degree of confidence the investor has in his own views. Applying the Bayesian rule
to the beliefs in market equilibrium relationship and investor own views, as formulated in (35) and

(36), Black and Litterman (1992) obtain the Bayesian updated expected returns and risks as

AP = (V)T PP (V) T e 4 P, (37)

VEL = Vi [(rV)T PP (38)

Replacing V' by V and plugging these two updated estimates into (6), one obtains the Black and

Litterman solution to the portfolio choice problem.

Note that the Black-Litterman expected return, iPY, is a weighted average of the equilibrium
expected return and the investor’s views about expected return. Intuitively, the less confident
the investor is in his views, the closer P is to the equilibrium value, and so the closer the Black-
Litterman portfolio is to we. This is indeed the case as shown mathematically by He and Litterman
(1999). Hence, the Black Litterman model tilts the investor’s optimal portfolio away from the
market portfolio according to the strength of the investor’s views. Since the market portfolio is a

reasonable starting point which takes no extreme positions, any suitably controlled tilt should also

10



yield a portfolio without any extreme positions. This is one of the major reasons making the Black

Litterman model popular in practice.

Whereas the Black Litterman model is considered to be a Bayesian approach, it is not entirely
Bayesian. For one, the data-generating process is not spelled out explicitly. Moreover, the Bayesian
predictive density is not used anywhere. Zhou (2009) treats the investors’ view as yet another layer
of priors, and combines this and the equilibrium prior with the data-generating process, resulting

a formal Bayesian treatment and an extension of the famous Black and Litterman model.

2.6 Asset Pricing Prior

Pastor (2000) and Pastor and Stambaugh (2000) introduce interesting priors that reflect an in-
vestor’s degree of belief in the ability of an asset pricing model to explain the cross section disper-
sion in expected returns. In particular, let Ry = (y;, z¢), where y; contains the excess returns of m
non-benchmark positions and z; contains the excess returns of K (= N —m) benchmark positions.

Consider a factor model multivariate regression
Yt = o+ Bay + uy, (39)

where u; is an m X 1 vector of residuals with zero means and a non-singular covariance matrix

Y = Vi1 — BV B'. Notice that o and B are related to p and V' through
a = — Bpg, B =ViaVy', (40)

where y; and Vi (4,5 = 1,2) are the corresponding partitions of p and V/,

i Vi Vio
s <M2) (V21 V22> (41)

A factor-based asset pricing model, such as the three-factor model of Fama and French (1993),

implies the restrictions a = 0 for all non-benchmark assets.

To allow for mispricing uncertainty, Pastor (2000), and Pastor and Stambaugh (2000) specify
the prior distribution of o as a normal distribution conditional on 3,
2 1
s

X

where 522 is a suitable prior estimate for the average diagonal elements of 3. The above alpha-Sigma

link is also explored by MacKinlay and Péstor (2000) in a classical framework. The magnitude of

11



0, represents an investor’s level of uncertainty about the pricing ability of a given model. When
oq = 0, the investor believes dogmatically in the model and there is no mispricing uncertainty. On

the other hand, when o, = 0o, the investor disregards the pricing model as entirely useless.

This asset pricing prior also has the Bayes-Stein shrinkage interpretation. In particular, the

prior on « implies a prior mean on u, say pg. It can be shown that the predictive mean is

pp = Tho + (1 —7) i1, (43)

where 7 inversely depends upon the sample size and positively on the level of prior confidence in

the pricing model. Similarly, the predictive variance is a mixture of prior and sample variances.

2.7 Objective Prior

Previous priors are placed on the parameters p and V', not on the resulting optimal portfolio
weights. Indeed, a diffuse prior on the parameters may be interpreted as a diffuse prior also on the
optimal portfolio weights. However, in various applications, supposedly innocuous diffuse priors on
some basic model parameters can actually imply rather strong prior convictions about particular
economic dimensions of the problem. For example, in the context of testing portfolio efficiency,
Kandel, McCulloch, and Stambaugh (1995) find that the diffuse prior on model parameters implies
a rather strong prior on inefficiency of a given portfolio. Klein and Brown (1984) provide a generic
way to obtain an uninformative prior on nonprimitive parameters, which can potentially be applied
to derive an uninformative prior on efficiency. In the context of return predictability, Lamoureux
and Zhou (1996) find that the diffuse prior implies a prior concentration on either high or low
degrees of return predictability. Thus, it is important to form informative priors on the model

parameters that can imply reasonable priors on functions of interest.

Tu and Zhou (2009) advocate a method for constructing priors on the unobserved parameters
based on a prior on the solution of an economic objective. In maximizing an economic objective, a
Bayesian agent may have some idea about the range of solution even prior to observing the data.
Thus the idea is to form a prior on the solution, from which the prior on the parameters can be
backed out. For instance, the investor may have a prior corresponding to equal or value-weighted
portfolio weights. The prior on optimal weights can then be transformed into a prior on p and V.

Such priors on the primitive parameters are called objective-based priors.

12



Formally, the objective-based prior starts from a prior on w,
w ~ N(wo, oV~ /7). (44)

where wg and V{y are suitable prior constants with known values, and then back out a prior on u,

1

where s? is the average of the diagonal elements of V. The prior on V can be taken as the usual

inverted Wishart distribution.

Using monthly returns on the Fama-French 25 size and book-to-market portfolios and three
factors from January 1965 to December 2004, Tu and Zhou (2009) find that the investment per-
formance under the objective-based priors can be significantly different from that under diffuse
and asset pricing priors, with differences in terms of annual certainty-equivalent returns greater
than 10% in many cases. In terms of the loss function measure, portfolio strategies based on the

objective-based priors can substantially outperform both strategies under the alternative priors.

3 Predictable Returns

So far asset returns are assumed to be IID and thus unpredictable through time. However, Keim
and Stambaugh (1986), Campbell and Shiller (1988), and Fama and French (1989), among others,
identify business cycle variables, such as the aggregate dividend yield and the default spread, that
predict future stock and bond returns. Such predictive variables, when incorporated in studies
that deal with the time-series and cross-sectional properties of expected returns, provide fresh in-
sights into asset pricing and portfolio selection. In asset pricing, Lettau and Ludvigson (2001) and
Avramov and Chordia (2006a) show that factor models with time varying risk premia and/or risk
are reasonably successful relative to their unconditional counterparts. Focusing on portfolio selec-

tion, Kandel and Stambaugh (1996) analyze investments when returns are potentially predictable.

3.1 One-Period Models

In particular, consider a one-period optimizing investor who must allocate at time 7" funds be-

tween the value-weighted NYSE index and one-month Treasury bills. The investor makes portfolio

13



decisions based on estimating the predictive system

re = a+bz_1+u, (46)

2z = 04 pz_1+ g, (47)

where 7, is the continuously compounded NYSE return in month ¢ in excess of the continuously
compounded T-bill rate for that month, z;_; is a vector of M predictive variables observed at the
end of month ¢t — 1, b is a vector of slope coefficients, and u; is the regression disturbance in month
t. The evolution of the predictive variables is essentially stochastic. Typically a first order vector
autoregression is employed to model that evolution. The residuals in equations (46) and (47) are

assumed to obey the normal distribution. In particular, let n; = [u, v;] then 7 ~ N(0, %) where
Y= [ Ty Tu } . (48)

Ovu Dy

The distribution of rry1, the time 7'+ 1 NYSE excess return, conditional on data and model
parameters is N(a + V' zr,02). Assuming the inverted Wishart prior distribution for ¥ and multi-
variate normal prior for the intercept and slope coefficients in the predictive system, the Bayesian

predictive distribution P (rpy1|®7) obeys the Student t density. Then, considering a power utility

investor with parameter of relative risk aversion denoted by ~ the optimization formulation is

1- 1
W' = arg max/ [ — w) exp(ry) j;we;{p(rf *rre)] P (rpq1|®7) droya, (49)
TT+1 B

subject to w being nonnegative. It is infeasible to have analytic solution for the optimal portfi-
olio. However, it can easily be solved numerically. In particular, given G independent draws for
Rr41 from the suitable predictive distribution, the optimal portfolio is found by implementing a

constrained optimization code to maximize the quantity

1 & {(1 —w)exp(ry) +wexp(ry) + R(Tg}rl)}l_7
G; = (50)

subject to w being nonnegative. Kandel and Stambaugh (1996) show that even when the statistical
evidence on predictability, as reflected through the R? is the regression (46), is weak, the current

values of the predictive variables, zp, can exert a substantial influence on the optimal portfolio.

14



3.2 Multi-Period Models

Whereas Kandel and Stambaugh (1996) study asset allocation in a single-period framework, Bar-
beris (2000) analyzes multi-period investment decisions, considering both a buy-and-hold investor
as well as an investor who dynamically rebalances the optimal stock-bond allocation. Implement-
ing long horizon asset allocation in a buy-and-hold setup is quite straightforward. In particular,
let K denote the investment horizon, then Ry x = Zszl rr+k 18 the cumulative (continuously
compounded) return over the investment horizon. Avramov (2002) shows that the distribution for

Rr4 i conditional on the data (denoted ®7) and set of parameters (denoted O) is given by

Rryk|,0,80 ~ N (\T), (51)
where
A = Ka+V [(pK—IM)(p—IM)_l] 2T (52)
+ Vo (" = Iu) (p— In) "t = (K =) In] (p = In) ',

K K K
Y = Kop+ ) 6(k)Sud(k) + ) oud(k) + ) 6(k)ow, (53)

k=1 k=1 k=1
ok) = 0 |(p" =) (o= 1) (54)

Drawing from the Bayesian predictive distribution is done in two steps. First, draw the model
parameters © from their posterior distribution. Second, conditional on model parameters, draw
Ry i from the normal distribution formulated in (51) - (54). The optimal portfolio can then be

found using (50) with Ry k replacing Ry41 and Kry replacing 7.

Incorporating dynamic rebalancing, intermediate consumption, and learning could establish a
non trivial challenge for recovering the optimal portfolio choice. Brandt, Goyal, Santa Clara, and
Stroud (2005) nicely address the challenge using a tractable simulation based method. Pastor and

Veronesi (2009) comprehensively survey the literature on learning in financial markets.

Essentially, the IID set-up corresponds to b = 0 in the predictive regression (46), which yields
Niia = Ka and Yyq = Ko? in (52) and (53). The conditional mean and variance in an IID world
increase linearly with the investment horizon. Thus, there is no horizon effect when (i) returns
are IID and (ii) estimation risk is not accounted for, as indeed shown by Samuelson (1969) and

Merton (1969) in an equilibrium framework. Incorporating estimation risk, Barberis (2000) shows
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that the allocation to equity diminishes with the investment horizon, as stocks appear to be riskier
in longer horizons. Accounting for both return predictability and estimation risk, Barberis (2000)

shows that investors allocate considerably more heavily to equity the longer their horizon.

One essential question is what are the benefits of using the Bayesian approach in studying asset

allocation with predictability?

We describe four major advantages of the Bayesian versus classical approaches. First, unlike
in the single period case wherein estimation risk plays virtually no role, estimation risk does play
an important role in long horizon investment decisions. Barberis shows that a long horizon in-
vestor who ignores it may overallocate to stocks by a sizeable amount. Second, even when the
predictors evolve stochastically, both Kandel and Stambaugh (1996) and Barberis (2000) assume
that the initial value of the predictive variables zg is non-stochastic. With stochastic initial value
the distribution of future returns conditioned on model parameters does not longer obey a well
known distributional form. Nevertheless, Stambaugh (1999) easily gets around this problem by
implementing the Metropolis Hastings (MH) algorithm, a Markov Chain Monte Carlo procedure
introduced by Metropolis et al (1953) and generalized by Hastings (1970). There are other several
powerful numerical Bayesian algorithms such as the Gibbs Sampler and data augmentation [see
a review by Chib and Greenberg (1996)] which make the Bayesian approach broadly applicable.
The third and fourth advantages pertain to the ability of a Bayesian investor to incorporate model
uncertainty as well as consider prior views about the degree of predictability explained by asset

pricing models. Both of these important features of the Bayesian approach are explained below.

3.3 Model Uncertainty

Indeed, as noted earlier, financial economists have identified economic variables that predict future
asset returns. However, the “correct” predictive regression specification has remained an open is-
sue for several reasons. For one, existing equilibrium pricing theories are not explicit about which
variables should enter the predictive regression. This aspect is undesirable, as it renders the em-
pirical evidence subject to data overfitting concerns. Indeed, Bossaerts and Hillion (1999) confirm
in-sample return predictability, but fail to demonstrate out-of-sample predictability. Moreover, the
multiplicity of potential predictors also makes the empirical evidence difficult to interpret. For ex-

ample, one may find an economic variable statistically significant based on a particular collection of
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explanatory variables, but often not based on a competing specification. Given that the true set of
predictive variables is virtually unknown, the Bayesian methodology of model averaging, described

below, is attractive, as it explicitly incorporates model uncertainty in asset allocation decisions.

Bayesian model averaging has been implemented to study hearth attacks in medicine, traffic
congestion in transportation economy, hot hands in basketball, and economic growth in macro
economy. In finance, Bayesian model averaging facilitates a flexible modeling of investors uncer-
tainty about potentially relevant predictive variables in forecasting models. In particular, it assigns
posterior probabilities to a wide set of competing return-generating models (Overall, 2/ models);
then it uses the probabilities as weights on the individual models to obtain a composite weighted
model. This optimally weighted model is ultimately employed to investigate asset allocation de-
cisions. Bayesian model averaging contrasts markedly with the traditional classical approach of
model selection. In the heart of the model selection approach, one uses a specific criterion (e.g.,
adjusted R?) to select a single model and then operates as if the model is correct. Implementing
model selection criteria, the econometrician views the selected model as the true one with a unit
probability and discards the other competing models as worthless, thereby ignoring model uncer-
tainty. Accounting for model uncertainty, Avramov (2002) shows that Bayesian model averaging
outperforms, ex post out-of-sample, the classical approach of model selection criteria, generating
smaller forecast errors and being more efficient. Ex ante, an investor who ignores model uncertainty

suffers considerable utility loses.

The Bayesian weighted predictive distribution of cumulative excess continuously compounded
returns averages over the model space, and integrates over the posterior distribution that summa-

rizes the within-model uncertainty about ©; where j is the model identifier. It is given by

2]%

P (Rroxl®1) = 3 P(My[01) [ P(O,M;.00) P (RrixIM;.0;.0r) 0y, (59)
j=1 i

where P (M;|®7) is the posterior probability that model M; is the correct one. Drawing from
the weighted predictive distribution is done in three steps. First draw the correct model from the
distribution of models. Then conditional upon the model implement the two steps, noted above,

of drawing future returns from the model specific Bayesian predictive distribution.
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3.4 Prior about the Extent of Predictability Explained by Asset Pricing Models

As noted earlier, the Bayesian approach facilitates incorporating economically motivated priors.
In the context of return predictability, the classical approach has examined whether predictability
is explained by rational pricing or whether it is due to asset pricing misspecification [see, e.g.,
Campbell (1987), Ferson and Korajczyk (1995), and Kirby (1998)]. Studies such as these approach
finance theory by focusing on two polar viewpoints: rejecting or not rejecting a pricing model
based on hypothesis tests. The Bayesian approach incorporates pricing restrictions on predictive
regression parameters as a reference point for a hypothetical investor’s prior belief. The investor
uses the sample evidence about the extent of predictability to update various degrees of belief in
a pricing model and then allocates funds across cash and stocks. Pricing models are expected to
exert stronger influence on asset allocation when the prior confidence in their validity is stronger

and when they explain much of the sample evidence on predictability.

In particular, Avramov (2004) models excess returns on NN investable assets as

1t = a(zt-1) + Bft + urt,
af

Jt = Mzi—1) + upe,
A

N

(

—1) = Qi + 1241,
(
)

(2t—1) = Ao + A124-1,

where f; is a set of K monthly excess returns on portfolio based factors, oy stands for an N-vector
of the fixed component of asset mispricing, a; is an N X M matrix of the time varying component,

and 3 is an N x K matrix of factor loadings.

Now, a conditional version of an asset pricing model (with fixed beta) implies the relation
E(Tt ’ Zt—l) = ﬁ)\(zt_l) (60)

for all t, where E stands for the expected value operator. The model (60) imposes restrictions on

parameters and goodness of fit in the multivariate predictive regression
Tt = po + p12¢—1 + Vg, (61)
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where pg is an N-vector and p; is an N x M matrix of slope coefficients. In particular, note that
by adding to the right hand side of (61) the quantity 3 (f; — Ao — A1z¢—1), subtracting the (same)
quantity Su s, and decomposing the residual in (61) into two orthogonal components vy = Bu ¢+,

we reparameterize the return-generating process (61) as

e = (o — BAo) + (1 — BA)ze—1 + Bft + ure. (62)

Matching the right-hand side coefficients in (62) with those in (56) yields

o = ap+ B, (63)

pr = ai+ B (64)

The relation (64) indicates that return predictability, if exists, is due to the security-specific
model mispricing component («a; # 0) and/or due to the common component in risk premia that
varies (A1 # 0). When mispricing is precluded, the regression parameters that conform to asset

pricing models are

o = BXo (65)
w = B (66)

Avramov (2004) shows that asset allocation is extremely sensitive to the imposition of model
restrictions on predictive regressions. Indeed, an investor who believes those restrictions are per-
fectly valid but is forced to allocate funds disregarding model implications faces an enormous utility
loss. Furthermore, asset allocations depart considerably from those dictated by the pricing models

when the prior allows even minor deviations from the underlying models.

3.5 Time Varying Beta

Whereas we have assumed that beta is constant, accounting for time varying beta is straightforward.

Avramov and Chordia (2006b) have modeled the N x K matrix of factor loadings as

B(zt) = Po+ 1 (Ix ® 2t), (67)

where ® denotes the Kronecker product. Avramov and Chordia (2006b) show that the mean and

variance of asset returns in the presence of time varying alpha, beta, and risk premia (assuming
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informative priors) can be expressed as

pr = a(zr) + Bler)(ay + Apzr), (68)
Sro= PiB(er)SspB(er) + P2l (69)

where the & notation stands for the maximum likelihood estimators, ¥ is the covariance matrix
of ug, and W is the covariance matrix of u,;, assumed to be diagonal. The predictive variance in
(69) is larger than its maximum likelihood analog as it incorporates the factors P; and P2, where
‘P; is a scalar greater than one and P, is a diagonal matrix such that each diagonal entry is greater

than one.

3.6 Out-of-sample Performance

Notwithstanding, stock return predictability continues to be a subject of research controversy.
Skepticism exists due to concerns relating to data mining, statistical biases, and weak out-of-sample
performance of predictive regressions as noted by Foster, Smith, and Whaley (1997), Bossaerts and
Hillion (1999), and Stambaugh (1999). Moreover, if firm-level predictability indeed exists, it is not

clear whether it is driven by time varying alpha, beta, or the equity premium.

The ultimate answer is that relative to the IID setup incorporating predictability does improve
performance of investments in equity portfolios, single stocks, mutual funds, and hedge funds.
Focusing on equity portfolios, Avramov (2004) shows that optimal portfolios based on dogmatic
beliefs in conditional pricing models deliver the lowest Sharpe ratios. In addition, completely
disregarding pricing model implications results in the second lowest Sharpe ratios. Remarkably,
much higher Sharpe ratios are obtained when asset allocations are based on the so-called shrinkage
approach, in which inputs for portfolio optimization combine the underlying pricing model and the
sample evidence on predictability. The last two specifications dominate optimal portfolios based

on the IID assumption.

Avramov and Chordia (2006b) show that incorporating business cycle predictors benefits a
real time optimizing investor who must allocate funds across 3,123 NYSE-AMEX stocks and cash.
Investment returns are positive when adjusted by the Fama-French and momentum factors as
well as by the size, book-to-market, and past return characteristics. The investor optimally holds

small-cap, growth, and momentum stocks and loads less (more) heavily on momentum (small-cap)
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stocks during recessions. Returns on individual stocks are predictable out-of-sample due to alpha
variation. In contrast, beta variation plays no role. Whereas Avramov (2004) and Avramov and
Chordia (2006b) focus on multi security paradigms, Wachter and Warusawitharana (2009) have
documented the superior out of sample performance of the Bayesian approach in market timing.

That is, the equity premium is also predictable by macro conditions.

3.7 Investing in Mutual and Hedge Funds

In an IID setup, Baks, Metrik, and Wachter (2001) (henceforth BMW) have explored the role of
prior information about fund performance in making investment decisions. BMW consider a mean
variance optimizing investor who is skeptical about the ability of a fund manager to pick stocks and
time the market. They find that even with a high degree of skepticism about fund performance the

investor would allocate considerable amounts to actively managed funds.

BMW define fund performance as the intercept in the regression of the fund’s excess returns
on excess return of one or more benchmark assets. Pastor and Stambaugh (2002a,b), however,
recognize the possibility that the intercept in such regressions could be a mix of fund performance
as well as model mispricing. In particular, consider the case wherein benchmark assets used to define
fund performance are unable to explain the cross section dispersion of passive assets, that is, the
sample alpha in the regression of non benchmark passive assets on benchmarks assets is nonzero.
Then model mispricing emerges in the performance regression. Thus, Péastor and Stambaugh

formulate prior beliefs on both performance and mispricing.

Geczy, Stambaugh, and Levin (2005) apply the Pastor Stambaugh methodology to study the
cost of investing in socially responsible mutual funds. Comparing portfolios of these funds to those
constructed from the broader fund universe reveals the cost of imposing the socially responsible
investment (SRI) constraint on investors seeking the highest Sharpe ratio. This SRI cost depends
crucially on the investor’s views about the validity of asset pricing models and managerial skills
in stock picking and market timing. Busse and Irvine (2006) also apply the Pastor Stambaugh
methodology to compare the performance of Bayesian estimates of mutual fund performance with
standard classical based measures using daily data. They find that Bayesian alphas based on the

CAPM are particularly useful for predicting future standard CAPM alphas.

BMW and Péstor and Stambaugh assume that the prior on alpha is independent across funds.
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However, as shown by Jones and Shanken (2005), under the independence assumption, the maxi-
mum posterior mean alpha increases without bound as the number of funds increases and ” extremely
large” estimates could randomly be generated, even when fund managers have no skill. Instead,
Jones and Shanken (2005) propose incorporating prior dependence across funds. Then, investors
aggregate information across funds to form a general belief about the potential for abnormal perfor-
mance. Each fund’s alpha estimate is shrunk towards the aggregate estimate, mitigating extreme

views.

Avramov and Wermers (2006) and Avramov, Kosowski, Naik, and Teo (2009) extend the
Avramov (2004) methodology to study investments in mutual funds and hedge funds, respectively,
when fund returns are potentially predictable. Avramov and Wermers (2006) show that long-only
strategies that incorporate predictability in managerial skills outperform their Fama-French and
momentum benchmarks by 2 to 4% per year by timing industries over the business cycle, and
by an additional 3 to 6% per year by choosing funds that outperform their industry benchmarks.
Similarly, Avramov, Kosowski, Naik, and Teo (2009) show that incorporating predictability sub-
stantially improves out-of-sample performance for the entire universe of hedge funds as well as for
various investment styles. The major source of investment profitability is again predictability in
managerial skills. In particular, long-only strategies that incorporate such predictability outper-
form their Fung and Hsieh (2004) benchmarks by over 14 percent per year. The economic value of
predictability emerges for different rebalancing horizons and alternative benchmark models. It is

also robust to adjustments for backfill bias, incubation bias, illiquidity, and style composition.

4 Alternative Data-generating Processes

Thus far data-generating processes for asset returns are either IID normal or predictable with
IID disturbances. Such specifications facilitate a tractable implementation of Bayesian portfolio
analysis. To provide a richer model of the interaction between the stock market and economic
fundamentals, Pastor and Stambaugh (2009a) advocate a predictive system allowing aggregate
predictors to be imperfectly correlated with the conditional expected return. Subsequently, Pastor
and Stambaugh (2009b) find that stocks are substantially more volatile over long horizons from an

investor’s perspective, which seems to have profound implications for long-term investments.
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Incorporating regimes shifts in asset returns is also potentially attractive, as stock prices tend
to persistently rise or fall during certain periods. Tu (2009) extends the asset pricing framework
(39) to capture economic regimes. In particular, he models benchmark and non benchmark assets

as

Yt = ot + Bst.’IJt + utst, (70)

where u;%t is an m x 1 vector with zero means and a non-singular covariance matrix, >%, and s;
is an indicator of the states. Under the usual normal assumption of model residuals, the regime
shift formulation is identical to the specification (39) in each regime. Tu shows that uncertainty
about regime is more important than model mispricing. Hence, the correct identification of the

data-generating process can have significant impact on portfolio choice.

To incorporate latent factors and stochastic volatility in the asset pricing formulation (39), Han

(2006) allows z; in

Yy = o+ Bxy +uy (71)

to follow the latent process

xr =c+ CXi_q1 + vy (72)

In addition, the vector of residuals u; could display stochastic volatilities. In such a dynamic factor
multivariate stochastic volatility (DFMSV) model, Han finds that the DFMSV dynamic strategies
significantly outperform various benchmark strategies out of sample, and the outperformance is
robust to different performance measures, investor’s objective functions, time periods, and assets.
In addition, Nardari and Scruggs (2007) extend Geweke and Zhou (1996) to provide an alternative
stochastic volatility model with latent asset pricing factors. In their model, mispricing of the

Arbitrage Pricing Theory (APT) pioneered by Ross (1976) can be accommodated.

Since the true data-generating process is unknown, there is an uncertainty about whether a
given process adequately fits the data. For example, previous studies typically assume that stock
returns are conditionally normal. However, the normality assumption is strongly rejected by the
data. Tu and Zhou (2004) find that the ¢ distribution can better fit the data. Kacperczyk (2008)

provides a general framework for treating data-generating process uncertainty.
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5 Extensions and Future Research

Even when Bayesian analysis of portfolio selection has impressively evolved over the last three
decades, there is still a host of applications of Bayesian methodologies to be carried out. For one,
the Bayesian methodology can be applied to account for estimation risk and model uncertainty
in managing long-short portfolios, international asset allocation, hedge fund speculation, defined
pensions, as well as portfolio selection with various risk controls. In addition, there are still virtually

untouched asset pricing theories to be accounted for in forming informative prior beliefs.

The mean variance utility has long been the baseline for asset allocation in practice. See,
for instance, Grinold and Kahn (1999), Litterman (2003), and Meucci (2005) who discuss various
applications of the mean-variance framework. Indeed, controlling for factor exposures and imposing
trading constraints, among other real time trading impediments, can easily be accommodated
within the mean variance framework with either analytical insights or fast numerical solutions.
In addition, the intertemproal hedging demand is typically small relative to the mean variance

component. Theoretically, however, it would be of interest to consider alternative set of preferences.

Employing alternative utility specifications must be done with extra caution. In particular,
as emphasized by Geweke (2001), the predictive density under iso-elastic preferences is typically
Student ¢t. The unrestricted utility maximization under the ¢ predictive density can have a diver-
gence problem. Nevertheless, the divergence problem could be accounted for by imposing suitable
portfolio constraints. Moreover, for a utility function with up to a given number of moments, the
divergence problem disappears with a suitable adjustment of the degrees of freedom of the ¢ distri-
bution. Harvey, Liechty, Liechty, and Miiller (2004) is an excellent example of portfolio selection
with higher moments that has an interpretation well grounded in economic theory. Ang, Bekaert,
and Liu (2005) and Hong, Tu, and Zhou (2007) advocate a Bayesian portfolio analysis that allows

the data-generating process be asymmetric.

A different class of recursive utility functions is found useful in accounting for asset pricing
patterns unexplained by the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner
(1965) and the consumption based CAPM (CCAPM) of Rubinstein (1976), Lucas (1978), Breeden
(1979), and Grossman and Shiller (1981). In particular, Bansal and Yaron (2004) utilize the

Esptein and Zin (1989) preferences to explain asset pricing puzzles in the aggregate level. Avramov,
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Cederburg, and Hore (2009) consider the Duffie and Epstein (1992) preferences to explain the
counter intuitive cross sectional negative relations between average stock returns and the three
apparently risk measures (i) credit risk, (ii) dispersion, and (iii) idiosyncratic volatility. Recursive
preferences are also employed by Zhou and Zhu (2009) who are able to justify the large negative
market variance risk premium. Indeed, to our knowledge, there are no Bayesian studies utilizing
the recursive utility framework, nor are there any Bayesian priors that exploit information on such
potentially promising asset pricing models. Future work should form prior beliefs based on long

run risk formulations.

Finally, portfolio analysis based on specifications that departs from IID stock returns (see mul-
tivariate process formulated in Sections 3 and 4) is challenging to solve in multi-period investment

horizons. Much future research in this area is called for.

6 Conclusion

In making portfolio decisions, investors often confront with parameter estimation errors and possible
model uncertainty. In addition, investors may have various prior information on the investment
problem that can arise from news, events, macroeconomic analysis, and asset pricing theories. The
Bayesian approach is well suited for neatly accounting for these features, whereas the classical
statistical analysis disregards any potentially relevant prior information. Hence, Bayesian portfolio
analysis is likely to play an increasing role in making investment decisions in practical investment

management.

While enormous progress has been made in developing various priors and methodologies for
applying the Bayesian approach in standard asset allocation problems, there are still investment
problems that are open for future Bayesian studies. Moreover, much more should be done to allow
Bayesian portfolio analysis to go beyond popular mean-variance utilities as well as consider more

general and realistic data-generating processes.
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