Online Appendix
Scaled PCA: A New Approach to Dimension Reduction

A Theoretical proof for the case of weak factors

To prove Propositions 1 and 2, we need the following lemmas.

Lemma 1. Let V be the diagonal matrix whose diagonal elements are the largest two eigenvalues of the

matrix 21 Z;Z! with Z; = FA#7; + 7:é;. Under Assumptions 1-5, together with N

V=, N'T.

Proof of Lemma 1. Note that V is robust to the rotational indeterminacy. So it is no loss of
generality to impose the normalization condition +F'F = I. Because %Zthl X2 =1, it is easy to

see that
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Let F and V be the eigenvectors and eigenvalues of the matrix YN, Z;Z;, we therefore have

V=F FZ 2AAF’+PZ§Ae +Z eAF’—l—Z'yiéié; F=L+--+1, say.
i=1 i=1

We will show that

Ny 4 0,(vi). (A3)

V =0,(N'T) + O, ( T

Al



Let Z, be the set of units whose ¢; is zero and Z; be its complement set. We analyze the above

four terms one by one. Consider I;. Note that 74; = 7; 4 u; in set Zy, and ¥; = u; in set I(;. Thus,

h=FF| ¥ 7d+ Y A | FE

—FE| Y (P 4+ 2yu)Ad+ Y u?)\lng} F'E

_ N N
= F'F 2 (’)’12 + 2’yiui))\i)\§ —+ Zu?/\,)\q F'F
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It is easy to see that } ;c7, Y?AiAl =<, NV and

Y yiwdidl = Y vi(win +wip)Aid, = Y yiwi Al 4+ O, (NYT1/2).
= = =

Let g5 = Bgs + €11, also note that

1 L -
Y YiwiaAiA = T Y Y eisqsvidiA] = Op (NV/2T71/2).
ZEILP 1614)5:1

With the above two results, we therefore have

Z ’YiuiAi)Lg = OP(NV/szl/Z) + OP(NVTfl/Z) — Op(Nval/Z)‘
iEI(P

Proceed to consider the term YN, u?A;AL. By the Cauchy-Schwarz inequality,
Zuz)\ AL < 22 71+ ui)AiA; = Op(NYT ).
Given the above result, we conclude

L=, F'F El'yz)\ AJFF <, NVT. (A4)
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Consider I. Similarly, it can be written as

N
L = F’F[ Y (vF + 2yiuwi) Aiél + Z“zzf\iéf} F
i€Z, i=1

As shown before, I, f; = 0 and therefore ¢/F =e/F. So
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Furthermore,

) YiuAelF = ) yiu; 1 A8/ + ) viujoAelF.
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By the same arguments, we have ¥ .7, 'yiuilz/\iéff = Yicz, 'yiui;)\ie;f = Op(N"/ 2). As regard to

the first term,
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where the right expression is O,(N"/?), and
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So we conclude that

Y yiwirelF = O,(N"/2) + 0,(N'T1/2).
i€Zy
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Finally, we consider the last term in I.

N N
E“z’z/\iégp = Z(ulz,l +2u; u;, + uzz))\iefF = OP(NVT_UZ).
i=1 '

I
—_

Given the above results, together with F'F = O,(v/T), we conclude that
L = O,(N"2T) + 0, (N"). (A5)
Term I3 is the transpose of I, so it has the same magnitude of I,. Consider I4.

N
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First note that F/ Yiez, v?E(e;el)F = O,(NY) and

We therefore have

F Y otleet - Bl ] < [ S 1A [ 1| T ot~ Eteel] ] = 0,00771)

i€y t=1s=1"1i€TI,

F'[ Y 7?¢i¢]]F = Op(N") + O,(N"/?T).
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In addition,

f/ [ Z 'yiuiéie'g} f = ?’[ Z 'yiuieieq ﬁ = ﬁ/ [ Z 'y,‘uilleieg] ﬁ + f’[ Z 'yiui,Qeieg} f
i€Zy i€Zy i€Zy i€Zy

The second expression is O,(N'T~1/2) + O,(N"/2T~1/2) according to the above analysis. The

first expression is O, (N v/2T1/2), Given this, we have

f/|: Z ’Yiuiéiéﬂ f: OP(NV/ZTl/Z) + Op(Nval/Z)‘
1€I¢
Furthermore,

F ( %u?eiel’)f <2F ( %uﬁleieg)f%— Zf’(%u?@eie;) F.
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For the second term, by the triangle inequality,

P(Este)el < [} Sl [ 57550

t=1s5=1
o[l B (£ 7L e
However, we have
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= 0, (N"2TV2) + 0,(NV).

Similarly,

T T
ZZ fS ll)z ejreis = O (NV/ZTl/Z) _|_O (Nl/)
t=1s=1 i=1

With the above results, we have
(Eu Jeie )F 0,(NY/2T~1/2) 4 0, (N'T ).

As regard to the first term. It can be decomposed as

N - . N . _ N _
F'(Zuﬁleid)F = F(Zu%l[eie; — E(eieﬁ)])F + F'(Zu%lE(eie§)>F.
i=1

i=1 i=1
Let {; ;v = ejrejy — E(ejre;). The first expression now is
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Z foft’zz ZQS%’E élss Clttl
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By assumption, the first term is bounded in norm by

[ti Hﬁ”z] [% i i H % i i qsqs' [gi,ss’gi,tt’ - E(gi,ss’gi,tt’ﬂ HZ]l/Z = Op(\/ﬁ).

t=1t'=1 i=1s=1s'=1

Sl

The second term is O, (%) by the independent assumption and the third term is bounded in

norm by

DZRIES 3l Do{ED 39 s xRl I

t=1 t=1t'=1"i=1 s=1s'=1

= 0,(VN).

‘2:| 1/2

With these, we have
~ N ~
F( L udileie) — E(eie)] ) F = 0, (VN) + Op( ).
i=1

Similarly, we can show that

N

~ N ~
p(;uglﬁ(@e;))F = 0p(VN) + 0y (7)-

We therefore have

N

Iy = Op(NY/2T) + Oy (= =)+ 0y (VN). (A6)

With the results (A4), (A5) and (A6), we have (A3). Given (A3) and (A4), we have Lemma 1. This

completes the proof. []

Lemma 2. Let FSPCA be the estimator of factors in the sPCA. Under Assumptions 1-5, there exists a

invertible matrix Rgpca such that

1—v

1 A
7THFSPCA FR,PCAH =, va/Z + Tfl +

Proof of Lemma 2. The previous lemma shows that we need to use N'T to normalize the

data YN, Z;Z!. In the remaining proof, we use F and R to denote the estimated factor and the

A6



rotational matrix in the sPCA if no confusion arises, i.e., F = FS*“A and R = Ripca. Now we have

A2 sl ~2 ,, = a5
NVTFZ NAE + NVTFE’y/\e +NVTZ A7 ME + NvTZ’ylee]F_FV.

Let R = 1= V- IF'FYN | 32A;AL. With this, we have

|IF - FR||
JT NVT3/2‘

‘FZ P2\ EV- H NVT3/2HZ% GAE'ED - H

NVT3/2HZ%€6FV U= m+m+ 15, (A7)

However, the previous analysis has shown that V — N"*A’A = 0,(1). Now we investigate the

above three terms one by one. Consider II;.

NVT3/2HF272“FV H NVT3/2HP272MFV H
gNVTS/ZHFZ'YZZ/\e (F—FR)V~ H+NVT3/2HPZ§3MPR’V 1
- \F NV\/T ﬁ \/T NVT

For the first expression, by %4; = ; + u;, we have

2/\ i€
ZEI ZEI UI

|70 =

(27iui + u?)AieiH =0, (N"2TY2) + 0,(N").

So the first expression is of smaller order relative to % |F — FR’||, the expression of the left hand

side of (A7). So it is negligible. Consider the second expression. Note that

Z’?Zz/\eF Z 'yl —|—2'ylul+u JAielF = Z’ylz/\eF—i—Z Z'ylul/\eF—i—ZuerF
i=1 i=1 i€Zy i€Zy i=1

The first term on right hand side is O, (N"/2T'/2). The second term is O,(N"). The third term is

Op(N v2p-1/ 2). Given the above result, we have
HIIl || = Op(Nl/Z*VTf?)/Z) + Op(Tfl) 4 Op(Nfl//ZTfl/Z)‘
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Consider II5.

1 1 N ~2 . AP —1 1 N ~2 Il -1 HZz‘:l'/);izei/\;H HP,?\H 5—1
\/THHHz—WH;%eiMFFV H—Nvmugwmwv | <*= NS LA |

It suffices to investigate Y~ Y?e;A!, which is equal to

N
E YreAi 42 Z YiujeA; + Zu?ei)\;.

The first term is <, N*/2T1/2, and the second is O, (N"/2) + O,(N"T~1/2), where the O, (N"T~1/2)
term is L (1 [|9:][%)/? Yiez, |7i02A]| <, N'T~1/2. The third term is O,(N'/2T~1). Given this,
we have

L[| = Op(N7Y/2) + Op(T™") 4+ O, (NV2/T3/2),

Consider II3. Note that
N ]
- i
VT NvT3/2 || &
1 NA2 LA N1 1 NA2 b d
:Z\IVTWHE%ele’(F_FR )V H+WH1221’)/ZBZEZFRV H

We use I, and I, to denote the above two expression. Further consider I,. Ignore smaller order

term, we see that

o < IS Afeie] ||E — FR’

Iyt
V7.
R e I

However,

N N
| - 7Peetlla < || 1 veiet]| | +2|| Y vowiesef| |+ || Y wlee!
i=1 i€Z, 2 i€, 2 =3 2

One can readily verify that the first term is O, (N"/2T) + O,(N"), the second term is O, (N"/2T1/2) +
O,(NY), and the third term is bounded by 2[| YN, u?eiefl|2 + 2|| YN, u?eief]l2.  The former
expression is bounded by (max;<y ul%l) | =N eiel]|, which, by the maximal inequality and

Theorem 5.8 of Baik and Silverstein (2006), is Op(N'/2). The latter term is O,(N"/2T-1/2) +
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O, (N'T~!). Summarizing all the results,

= 0,(N"/T) +0,(N") + O, (N'/2).

al 2
P /
| oz
i=1

So if N

HZlI\Ll ’/)71.281‘8;”2 _ (1)
NT o\

implying that term ||1,|| is negligible since it is of smaller order relative to \%T |F — ER’||. Further

consider I,. Similar arguments can show that

_ _ 1 N 1 N
1ol = Op(NT*2T712) 1+ 0p(T™1) + Oy (55 \ 72) + Or (55 72)
where term O, (§7 2 ) is equal to

1 lev

o (1) (L) (L) =,

i=1
Summarizing the results of II;, II; and II3, we conclude that

IF — FR'|

77 =0,(N"V3) +0,(T™") + 0, (I\llv\/TW)+Op(Z\171/ZIF\£)'

N

Under the assumption that

— = 1//2 Nt- 1/_0 1//2
VT V

we therefore have

lev

1 .~ . -
= E— ER| = 0p(N""/2) +0,(T1) + O~ ).

VT

The above proof also confirms that all the three terms on right hand side are not 0,(-) terms.

This completes the proof. U

Lemma 3. For the PCA method, under Assumptions 1-6, together with N~ > c, the estimated factor
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FPCA s not a consistent estimator F in the sense that for any invertible matrix Rpca,

1 = .
ﬁHFPCA — FRpcpl| > ¢

for some constant c¢* with a strictly positive probability.

Proof of Lemma 3. Similarly as the analysis in the previous preposition, we first investigate the
magnitude of the eigenvalues for the data Y~ ; X; X! in the PCA. Let F and V be the eigenvectors
and eigenvalues of the matrix YN, X; X/ (note that F and V are different from the the same

symbols in the previous lemma), we therefore have
~ ~ . N . . N N . N ~
V=F|FY NME+FY Méi+ ) 6AF +) é¢j|F=L+---+1, say.

Consider I;. Note that F'F = 0,(v/T) and I~ ; A;A! = O(NY). Given this, we have I; = O,(N'T).

Next consider I, which is bounded in norm by

|F'E|| [g H i)\ieituz} V2 [té ||ftH2} vz 0,(N"/T).

The third term is the transpose of the second and is therefore OP(N"/ 2T). Consider I, which is

equal to
T N
P,ZE e; P Z thfs Z €it€is — <ez’t€is)] + Z thf;ZE(eiteis)-

The first expression on right hand side is bounded in norm by

N T T N 2:1/2
LIAIP] [ L X | Lleues — E(ene| | = 0, (VNT).

i=1 t=1s=1"i=1
The second expression is O,(N). Given this, we have

V =0,(N'T) + O,(VNT) + O,(N).

Note that, when ¥ > ¢, the last term is either of the same magnitude with the first term, or
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dominates the first term. This means that

1
NvVT

N
V_FF ):AZ-A;FP] > ¢
i=1

for some c*® with a positive probability, implying that even with some approximate normalization,
V is no longer a good estimator for the largest two eigenvalues of the matrix FY_N ; A;A/F’. Since
%F is the eigenvectors of the matrix FY_¥; A;A/F’ because +F'F =1 and Y, A;A! is a diagonal
matrix, we immediately obtain that the estimator factor F = +/TF is no longer a consistent
estimator of F in the sense that %Hf — FR'|| > ¢* for some constant c* with a strictly positive
probability. We can use contradiction arguments to show this. Suppose that this is not the
case, we therefore have %H/F\— FR'|| = 0y(1). Because +F'F =1 and +F'F = I, we see that R
is an orthonormal matrix. This result would imply that x|V — FELN LAEF| = 0,(1). A

contradiction is obtained. This completes the proof. L]

Lemma 4. Under Assumptions 1-6, i N 0, for the PCA method, we have
p T

1

Nl*l/
VT T

|IFPA — FRpeall =p N7V/2 + T

Proof of Lemma 4. We use F and R to denote the estimated factors and the rotational matrix in

the PCA method for notational simplicity, if no confusion arise. By definition, we have

1'N 11! 1'N 1N 11! 1N T _ Ty
NVTP;/\i/\Z-F +WP;/\Z~@+ WZei/\iP + NVTZ;eiei F=FV.

i=1

Given # — 0, by the proof of Lemma 3, we see V — N"VA’A = 0,(1), implying V-1 = O,(1).

Thus,

ol Sl 1 'NA-’\A—l 1 N~ I {7 —1 1 N--/’\’\—l_

F—FR = NVTF; & FV1 4+ W;eiu FVv—14 NVTI;eieiPV =L+ L+
where R = NlTVfll?’ FA’A. We consider the three terms on right hand side one by one. Consider
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L.

1 1 1 1 N
—=Inl < —| FZA e(F—FR)V |+ —= H Y MtV
JT JTINT NT &
1[I ||Z 1 Aieill |E— FRY| o 4 1 IF S Al oo
V=l + [\

SUNVT VNT T VNT VT VNTT

The first term is a smaller order one relative to % |F — ER’|| and therefore is negligible. The

second term is O,(N~"/2T~1/2). So we have %Hh” = 0,(N~v/2T~1/2). Consider .

1 |2N el 1| IIF)
VNY VNYT T VT

L[| < IV=Hl = Op(N72).

|
VT
Next consider the third term. Ignore the smaller order term, we see that

1 1 Y s
5] < || zee (F— R+ | i LR T
f VTIN'T; VT NT

N

11 ¥ e
- -1
<t Sl R+ ok - |
= E(eie) RV
+ \/THNVT; (eie;)
where || - ||2 denotes the spectral norm. By Theorem 5.8 of Baik and Silverstein (2006), we have

that || gir Zivy eiel]|, = Op(N~), so the first term is a smaller order one relative to % |F — ER||
and therefore is negligible. The second term can be readily verified to be O,(N~"/2T~1/2) and

the third term is O, (N*VT~1).

With the results on 11, I; and I3, we therefore have

\}Tuﬁ _ER| = 0,(N""/2) + O,(N''TY).

It is easy to verify that the two terms on right hand side are not 0,(-) terms. Given this, we have

Lemma 4. This completes the proof. [

Proof of Proposition 1. Proposition 1 is the direct result of Lemmas 1 — 4. This completes the

proof. [
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Proof of Proposition 2. We prove the results with two cases. Case one: w > ¢ for some ¢ > 0;

1—
and Case two: NTV — 0.

Case one: According to Proposition 1, when # > ¢ for some ¢ > 0, the estimates of the
factors in the sPCA are consistent but the estimates in the PCA are not. As the result, the
correlation coefficient of the estimated factors and the true factors in the sPCA converges to 1,
but the corresponding correlation coefficient in the PCA is strictly less than 1. In the proof of
Lemma 5 below, we show that when a single factor is used to predict, the asymptotic MSFE is
equal to

MSFE = g*(1 —r%) + o7

where r is the correlation coefficient. Now it is easy to see that the higher the correlation, the
better the forecast. So the sPCA forecast outperforms the PCA forecast. In the current setting,
we have more factors used in forecast. However, with the same arguments in Lemma 5, we can
show that

1 -
MSFE — 07 =, THF — ERJJ%.

Given that %Hﬁ — FR||? = 0,(1) in the sPCA and %Hf — FRJ|? > ¢ with a positive probability in
the PCA, we immediately obtain that the sPCA has a superior forecast performance than the

PCA.

Case two: According to the result of Proposition 3, we see that the MSFEs of the two methods

are

1 1<
MSFEpca = ?30—3 += Y BT (AA)TITTA (A A) B,
t=1

1 1d
MSFEspca = 307 + 7 ) B (A'WA) T ATFAA(AWA) 7.
t=1

However, one can readily verify that

T 1-v
Z’B*/(A/A)fll-?CA(A/A)flﬁ* =, (NT )2

1
T t=1
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and

T

7 LB (NWA)TIATEAA(NWA) B =) N7
t=1

—_

So under the assumption M ® 5 0o, we see that the MSFE of the PCA is larger than that of the

sPCA. This completes the whole proof. [

B Theoretical proofs for the case of strong factors

Proof of Proposition 3. The proof of Proposition 3 is based on Theorem 3 of Bai and Ng (2006).
We only highlight some differences. The whole arguments are essentially the same. Here we use
the PCA method to illustrate. With some straightforward computations (see also Bai (2003), we

would have that under vVN/T — 0,

~ sl 1 N
\/ﬁ(ft — RPCAft) = VﬁlfF/Fi Z)\ieit + 0p(1).
r VNEH

where Rpcp = ﬁ‘?_lﬁ/ FA’A. In Bai (2003), he first shows the probability limit of V and %1?/ F.
With these results, he next derives the final limiting distribution.

The treatment of this paper is slightly different. We rewrite the above display as

VN(fi — Recaft) = RPCA(%A’A)

VN

N
Ajeir +0p(1).
=1

The benefits of the above display is that it involves the rotational matrix and the true values and
we can see clearly the consequence of rotational indeterminacy. With the arguments in Bai and

Ng (2006), we have this proposition. []

To prove Proposition 4, we first present two lemmas on the MSFEs of the sPCA and PCA
forecasts, of which the associated proofs can be found in Huang, Jiang, Li, Tong, and Zhou

(2021).
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Lemma 5. Let ¢° and 0° be

. Y e L3
— i — ! , A8
S NP R s Ty ) (49

and

14+/1+4¢2 . . .
\/ ¢ if YL ( iz_ i2)>0?
45 (14 1/144E2)2
/144821 . . .
if Zil\il( 72— y?) <O0.
Vi (11422

If one uses the first principal component of {7;X;;} to conduct forecasting, under Assumptions 1-5, as

6° = (A9)

N — 00, T — oo and /N/T — 0, then the asymptotic MSFE is

1

T
- Y €t (A10)

t=1

MSFEgpca = B2(1 — 0°%) + 02, where o2 = plim

T—o0

Lemma 6. Let { = Zf\il ¢ilpi/2§il(¢z‘2 - lp12> and

14+4/1+482 N (2 ) .
1 (p7 — 7)) >0;
¢4§2+(1+\/@)2 if Lz (97 — 97)
V1+42 1 LN
=1 (7 — ;) <O.
V41— /1) i L (97— ¥i)

6= (A11)

If one uses the first principal component of {X;;} to conduct forecasting, under Assumptions 1-5, as

N — oo and T — oo, then the asymptotic MSFE is

1

T
= Y et (A12)

t=1

MSFEpca = B*(1 — 6%) + 02 where o? = plim

T—co

Proof of Proposition 4. First consider the case of |¢;| > |¢;| and ¢;¢; > 0 for all i. It is no loss
of generality to assume ¢; > 1; > 0. Otherwise, do the manipulation of ¢; — —¢; and ; — —1;.

Consider the case that N = 2, we need to show

PIp1p1 + P3¢ < P11 + P22 _ (A13)
¢7(¢7 — 1) + 3(d3 — ¥3) ~ (¢1 — ¥]) + (¢35 — ¥3)
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Straightforward computations indicate that the above inequality is equivalent to

1P 22
(¢%—<P§)( flpz— s ) 0. (A14)
-y P -3
It suffices to verify that 4)2 1;:2 deceases as ¢ increases. Since we normalize X;;, we have ¢? + ¢? +
(762 =1 for all i. So a larger 472 leads to a smaller l[J , which further leads to a smaller ¢24’_1P¢2 =3 _ZZZ

with z = ¢/¢. Given this fact, we have shown the result for N = 2. Now we are to prove the

general case by induction. Suppose that the result holds for N = N* —1, i.e,,

R PR Y S 11/

i 14>2(4>2 Y2 T XN, 1<4>2 y?) (A1)

Consider the case N = N*. Among ¢; for i =1,2,...,N*, there must exist a largest ¢ (which may
be not unique). It is no loss of generality to assume that ¢+ is the largest. Otherwise, we change

the positions of the largest ¢; and ¢n+. From (A15), we have

L GReip _ Xy o7 (7 — o)
Nl T TN (9F - )

=a =b

< ¢, (A16)

where a and b are implicitly defined above, and the second inequality is due to the fact that ¢%;.

is the largest. Note that we need prove

T (PR AT 1
- : < == , (A17)
L1797 — ) T XN (9F — v7)

which is equivalent to

L PRt oy TN g+ onegne

- - . (A18)
Yot 9797 — D) + R (9R- —yR) T L (0F - 97) + 0k —¥R)
According to the definitions of a and b, the above inequality is identical to
A L Ry 0 PR VR /LU /0 (A19)

b (92 — 92) + 03 (93 —9R) T TN (97 — 92) + (9% — ¢3.)
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Because a < b, it is seen that

aY Y i + PN ne < bYN T pitpi + 93 pne e .
YN N (@? — 92) + ¢ (9% — v3) T LY (9? — 9?) + 93 (9% — ¥R

So we remain to prove

b i + ¢ PP < N i+ pne P .
M@ - v2) + ¢ (PR — ¢Re) N*‘1<4>2 ¥7) + (9% — ¥3)

Some straightforward computations show that the above inequality is equivalent to

NN N oy
(45— ) (q%* — 3. N"‘1<4>2 ¢?>> =0

Let z; = ¢;/ ¢;. Note that ¢+ is the largest, which means for each i,

= 7 = 2T 2 2"
N~ Wne 1—zne T 1=z =

(PN* lPN* . ZN* < Zi (Pill)i

With the fact that < % if 7 < <4Z ;7 for each i, we have

N D Y
P — PR Ly (@ —vD) T

(A20)

(A21)

(A22)

(A23)

(A24)

So we obtain (A22) because ¢3%. > b. This proves the result of the first case. The remaining three

cases can be proved by the same argument and the details are therefore omitted.

Now consider the first two cases, which suggest that YN, ¢? > YN ¢? and |¢°| < |g].

According to the formulas of MSFE and 6, we see that the MSFE is a decreasing function of

62 and 62 is a deceasing function of |¢|. In order to make MSFE smaller, we should require |&| to

be smaller. So the sPCA outperforms the PCA in the former two cases. Next consider the later

two cases, in which we have YN, ¢? < YN, ¢? and |¢°| > |¢|. By checking the formulas, we find

that the MSFE is a decreasing function of 62 but 6? is a increasing function of |¢|. Given this fact,

we conclude that the sSPCA also outperforms in the later two cases. This completes the proof of

Proposition 4. [
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C Data Appendix

This appendix first lists the 123 macroeconomic time series considered and obtained from
the Federal Reserve Monthly Database for Economic Research (FRED-MD). For each variable,
we report the FRED-MD mnemonics, a full variable description, and the transformation code
(trcode) used to ensure stationarity of the underlying data series. The particular form of the
transformations are specified below. To fix notation, let xfjw and xlt.,rt denote the raw and
transformed version of the ith variable observed at time f, respectively, and let A = (1 —L),

with a lag operator Lxj7" = x;3%,. We then apply one of seven possible transformations:

1. vl x},rt = xlriw

2. AL xffy = x5V — xj3Y,

3. A2 lvl: Xl = Aler,atw

4. In: xf, =In (xlra;w)

5. Adni = 1n (xf3") ~In (x5,
6. A?In: x!f, = A’In (xff;w)

Il —lvly q | tr _ raw raw
A= X = A (X /x5 —1

N
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No. Mnemonic Variable description trcode
1 RPI Real Personal Income 5
2 W875RX1 Real personal income ex transfer receipts 5
3 INDPRO IP Index 5
4 IPFPNSS IP: Final Products and Nonindustrial Supplies 5
5 IPFINAL IP: Final Products (Market Group) 5
6 IPCONGD IP: Consumer Goods 5
7 IPDCONGD IP: Durable Consumer Goods 5
8 IPNCONGD IP: Nondurable Consumer Goods 5
9 IPBUSEQ IP: Business Equipment 5
10 IPMAT IP: Materials 5
11 IPDMAT IP: Durable Materials 5
12 IPNMAT IP: Nondurable Materials 5
13 IPMANSICS IP: Manufacturing (SIC) 5
14 IPB51222s IP: Residential Utilities 5
15 IPFUELS IP: Fuels 5
16 CUMENS Capacity Utilization: Manufacturing 2
17 HWI Help-Wanted Index for United States 2
18 HWIURATIO Ratio of Help Wanted /No. Unemployed 2
19 CLF160V Civilian Labor Force 5
20 CE160V Civilian Employment 5
21 UNRATE Civilian Unemployment Rate 2
22 UEMPMEAN Average Duration of Unemployment (Weeks) 2
23 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 5
24 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5
25 UEMP150V Civilians Unemployed - 15 Weeks & Over 5
26 UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
27 UEMP270V Civilians Unemployed for 27 Weeks and Over 5
28 CLAIMSx Initial Claims 5
29 PAYEMS All Employees: Total nonfarm 5
30 USGOOD All Employees: Goods-Producing Industries 5
31 CES1021000001 All Employees: Mining and Logging: Mining 5
32 USCONS All Employees: Construction 5
33 MANEMP All Employees: Manufacturing 5
34 DMANEMP All Employees: Durable goods 5
35 NDMANEMP All Employees: Nondurable goods 5
36 SRVPRD All Employees: Service-Providing Industries 5
37 USTPU All Employees: Trade, Transportation & Utilities 5
38 USWTRADE All Employees: Wholesale Trade 5
39 USTRADE All Employees: Retail Trade 5
40 USFIRE All Employees: Financial Activities 5
41 USGOVT All Employees: Government 5
42 CES0600000007 Avg Weekly Hours: Goods-Producing 1
43 AWOTMAN Avg Weekly Overtime Hours: Manufacturing 2
44 AWHMAN Avg Weekly Hours: Manufacturing 1
45 CES0600000008 Avg Hourly Earnings: Goods-Producing 6
46 CES2000000008 Avg Hourly Earnings: Construction 6
47 CES3000000008 Avg Hourly Earnings: Manufacturing 6
48 HOUST Housing Starts: Total New Privately Owned 4
49 HOUSTNE Housing Starts, Northeast 4
50 HOUSTMW Housing Starts, Midwest 4
51 HOUSTS Housing Starts, South 4
52 HOUSTW Housing Starts, West 4
53 PERMIT New Private Housing Permits (SAAR) 4
54 PERMITNE New Private Housing Permits, Northeast (SAAR) 4
55 PERMITMW New Private Housing Permits, Midwest (SAAR) 4
56 PERMITS New Private Housing Permits, South (SAAR) 4
57 PERMITW New Private Housing Permits, West (SAAR) 4
58 DPCERA3MO86SBEA  Real personal consumption expenditures 5
59 CMRMTSPLx Real Manu. and Trade Industries Sales 5
60 RETAILx Retail and Food Services Sales 5
61 AMDMNOXx New Orders for Durable Goods 5

A19



No. Mnemonic Industry Description Category
62 AMDMUOx Unfilled Orders for Durable Goods 5
63 BUSINVx Total Business Inventories 5
64 ISRATIOx Total Business: Inventories to Sales Ratio 2
65 M1SL M1 Money Stock 6
66 M2SL M2 Money Stock 6
67 M2REAL Real M2 Money Stock 5
68 AMBSL St. Louis Adjusted Monetary Base 6
69 TOTRESNS Total Reserves of Depository Institutions 6
70 NONBORRES Reserves Of Depository Institutions 7
71 BUSLOANS Commercial and Industrial Loans 6
72 REALLN Real Estate Loans at All Commercial Banks 6
73 NONREVSL Total Nonrevolving Credit 6
74 CONSPI Nonrevolving consumer credit to Personal Income 2
75 MZMSL MZM Money Stock 6
76 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6
77 DTCTHENM Total Consumer Loans and Leases Outstanding 6
78 INVEST Securities in Bank Credit at All Commercial Banks 6
79 FEDFUNDS Effective Federal Funds Rate 2
80 CP3Mx 3-Month AA Financial Commercial Paper Rate 2
81 TB3MS 3-Month Treasury Bill 2
82 TB6MS 6-Month Treasury Bill 2
83 GS1 1-Year Treasury Rate 2
84 GS5 5-Year Treasury Rate 2
85 GS10 10-Year Treasury Rate 2
86 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
87 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
88 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1
89 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1
90 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1
91 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1
92 T5YFFM 5-Year Treasury C Minus FEDFUNDS 1
93 T10YFEM 10-Year Treasury C Minus FEDFUNDS 1
94 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1
95 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1
96 EXSZUSx Switzerland /U.S. Foreign Exchange Rate 5
97 EXJPUSx Japan/U.S. Foreign Exchange Rate 5
98 EXUSUKXx U.S./U.K. Foreign Exchange Rate 5
99 EXCAUSx Canada/U.S. Foreign Exchange Rate 5
100  PPIFGS PPI: Finished Goods 6
101  PPIFCG PPI: Finished Consumer Goods 6
102 PPITM PPI: Intermediate Materials 6
103 PPICRM PPI: Crude Materials 6
104  OILPRICEx Crude Oil, spliced WTT and Cushing 6
105 PPICMM PPI: Metals and metal products: 6
106  CPIAUCSL CPI: All Items 6
107 CPIAPPSL CPI: Apparel 6
108  CPITRNSL CPI: Transportation 6
109  CPIMEDSL CPI: Medical Care 6
110  CUSRO000SAC CPI: Commodities 6
111  CUURO0000SAD CPI: Durables 6
112 CUSRO000SAS CPI: Services 6
113 CPIULFSL CPI: All Items Less Food 6
114  CUURO0000SAOL2 CPIL: All items less shelter 6
115  CUSRO000SAOL5 CPI: All items less medical care 6
116  PCEPI Personal Cons. Expend.: Chain Index 6
117  DDURRG3MO086SBEA  Personal Cons. Exp: Durable goods 6
118  DNDGRG3MO086SBEA  Personal Cons. Exp: Nondurable goods 6
119  DSERRG3MO086SBEA Personal Cons. Exp: Services 6
120  S&P 500 S&P’s Common Stock Price Index: Composite 5
121  S&P: indust S&P’s Common Stock Price Index: Industrials 5
122 S&P div yield S&P’s Composite Common Stock: Dividend Yield 2
123 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 5
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