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1 Introduction

A major part of the research effort in finance is directed toward understanding why different

financial assets earn vastly different returns on average. For example, as can be seen from Table 1,

during the 82 year period 1927-2008 the U.S. stock market as a whole earned an average inflation

adjusted continuously compounded real return of 5.86%, whereas U.S. Treasury bills earned only

0.72%.1 Small value stocks earned an impressive 10.63%. In comparison, small growth stocks

earned only 4.90% even though the two types of stocks had similar return volatilities and small

value stocks had a substantially higher dividend growth rate. To the extent investors’ beliefs are

rational, realized average returns measured over a sufficiently long horizon would be close to what

investors expected to get from holding those assets. The aim of asset pricing models is to explain

why even rational investors would be content to hold assets that earned such vastly different returns

on average.

Returns log(Pt/Dt) Div. growth rate
βMktMean (%) σ (%) Mean σ Mean (%) σ (%)

Risk free rate 0.72 4.0
Market 5.86 20.4 3.345 0.446 1.45 11.0 1.00
Small growth 4.90 29.9 3.972 1.033 0.11 23.8 1.28
Small value 10.63 28.7 3.621 0.717 7.40 41.3 1.33

Table 1: Selected average financial asset returns, 1927-2008.2

According to finance theory, assets that have riskier payoffs should earn higher returns on

average to compensate investors for bearing that increased risk. Not all risk matters though. When

markets are perfect and frictionless, investors need only be compensated for bearing systematic risks

that can not be diversified away. When there are transactions costs, other risks may matter. A

variety of rational asset pricing models have been proposed in the literature, and each model takes

a different stand on how systematic risks and other risks that matter should be measured. There

are strengths and weaknesses associated with each model – while a given model may work better

with certain asset classes, and worse in other asset classes. Differences on how systematic risk is

measured come from differences in the assumptions regarding preferences of agents in the economy,

their endowments, production technology, stochastic process governing the evolution of variables

taken exogenous to the model, and the nature of frictions in markets for financial and real assets.
1Welch (2000) surveys 226 financial economists and finds a consensus expected market risk premium around 7%
2Sources: Risk free rate from the CRSP database; nominal returns on various stock portfolios are from Professor

Kenneth French’s data library; nominal returns converted to real using the CPI.
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In spite of their differences, rational asset pricing models share some important commonalities:

The law of one price, i.e., two securities that have the same future payoffs must have the same

price; and linear pricing, i.e., the price of a portfolio of securities should equal the sum of the prices

of the securities that make up that portfolio. In addition, most models impose the restriction

that financial markets are in equilibrium, i.e., the first order condition for investors’ (constrained)

optimization problem are satisfied and security markets clear. Finally, some asset pricing models

also explicitly impose a no arbitrage restriction, i.e., positive payoffs must have positive prices.3

The Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model (CAPM), although the

earliest, is still the most widely used among practitioners and in classrooms – Welch (2008) finds

that about 75% of finance professors recommend using the CAPM. According to the CAPM the

expected return on an asset is given by:

E[Rit]−Rft = βiE[Rmt −Rft] (1)

where Rmt, Rft, and Rit are, respectively, the gross returns on the market portfolio of all assets in

the economy, the risk free asset, and an arbitrary asset; βi = Cov(Rit, Rmt)/V ar(Rmt); and E[·] is

the expectation operator.

The common practice in empirical studies of the CAPM is to use the return on an index of

all exchange traded stocks as the proxy for the unobserved return on the market portfolio of all

assets in the economy. Roll (1977) pointed out that the CAPM equation (1) will continue to hold

when the return on the market portfolio is replaced by the return on any other asset that is on the

mean-variance frontier of all asset returns; and therefore tests of the CAPM in effect are tests of

the mean variance efficiency of the stock market portfolio.

The CAPM was derived in a static one period economy. Merton (1973) showed that in a

dynamic economy, the following intertemporal version of the CAPM like relation (ICAPM) will

hold.

Et−1[Rit]−Rft = βim,t−1Et−1[Rmt −Rft] +
S∑
s=1

βis,t−1Et−1[Rst −Rft] (2)

where Et−1[·] denotes the conditional expectation operator based on the information set at date

t−1; Rmt denotes the time t return on the market portfolio as before; and Rst, s = 1, 2 . . . S, denote

returns on the S basis assets that help hedge against changes in future investment opportunities; and
3Due to space constraints we do not cover the rich literature on behavioral finance pioneered by Benartzi and

Thaler (1995), Barberis, Shleifer, and Vishny (1998) and Daniel, Hirshleifer, and Subrahmanyam (1998), among
others, building on the seminal work of Kahneman and Tversky (1979).

2



βm,t−1, βs,t−1, s = 1 . . . S, are the slopes in the conditional multiple regression of Rit on Rmt, Rst, s =

1 . . . S. Ross (1976) showed that the unconditional version of the relation given in (2) will hold

when returns have a linear factor structure and there are no arbitrage opportunities in the economy.

Connor (1984) derived the results in Ross (1976) using equilibrium arguments. The algebra of the

mean-variance frontier implies that a particular portfolio of the market and the S basis assets in

the case of Merton (1973) and the returns on the primitive factor portfolios in the case of Ross

(1976) will be mean-variance efficient. It is therefore not surprising that the mean-variance frontier

of asset returns has received wide attention in the finance literature.

Hansen and Richard (1987) show that most asset pricing models, including the CAPM and

the ICAPM, have the following conditional and unconditional stochastic discount factor (SDF)

representations:

Et−1[mtRit] = 1 (3)

E[mtRit] = 1 (4)

where Rit denotes the time t gross return on financial asset i as before, mt denotes the stochastic

discount factor that helps assign a price at time t − 1 for payoffs that occur at time t, and Et−1

denotes the expectation operator based on information available at date t − 1. An asset pricing

model specifies what mt is as a function of observable variables and unobserved parameters, and the

collection of assets for which (3) and (4) hold. Taking the unconditional expectation of both sides

of (3) gives the unconditional SDF representation in (4) that is frequently used in the empirical

literature. Hansen and Jagannathan (1991) show that there is a one to one map between the mean-

variance frontier of all candidate SDFs that satisfy (4) and the mean variance frontier of asset

returns. Therefore, it should not come as a surprise that, once again, the mean-variance frontier of

asset returns plays an important role in empirical evaluation of asset pricing models.

Hansen and Richard (1987) also showed that the SDF representation in (3) can be rearranged

to get the following conditional and unconditional beta representations:

Et−1[Rit]−Rft = βi,m,t−1Et−1[R∗t −Rft] (5)

E[Rit]−Rft = βi,mE[R∗t −Rft] (6)

where R∗t is the benchmark return on an asset that pays the SDF mt, or the return on the portfolio

whose payoff best approximates the SDF in the least squares sense when the SDF mt is not in the
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linear span of the traded assets, and

βi,m,t−1 = Covt−1(Rit, R∗t )/V art−1(R∗t ). (7)

Further, R∗t has the property that it is the global minimum second moment return. Hence a CAPM

like relation holds for every asset pricing model, with the benchmark return replacing the market

portfolio return. In an asset pricing model where the benchmark return itself is a portfolio of several

other separating portfolios, the relations in equations (5) and (6) will give rise to corresponding

multibeta representations of the asset pricing model.

The multi-beta representation in (2) has an intuitive appeal, especially to practitioners and risk

managers, in understanding the magnitude of exposure of a security to different types of systematic

risks. In view of this, we focus more on econometric methods for the beta representation of asset

pricing models.

The rest of the paper is organized as follows. In section 2 we discuss various statistical methods

for empirical evaluation of asset pricing models using the cross section of security returns. In section

3 we survey the empirical support for various asset pricing models. We summarize and conclude in

section 4.

2 Econometric Methods

Any asset pricing model must, at least implicitly, specify a stochastic discount factor which links the

cross sectional variation in observed excess returns to the conditional covariance of the underlying

return with the stochastic discount factor. The stochastic discount factor representation provides

a rich set of conditional moment condition based on which estimation and asset pricing tests in

principle can be carried out. In order to implement (3) empirically, however, the econometrician

must specify how investors form expectations as well as specifying the evolution of their information

set leading to a joint inference problem. In practice, it is therefore the unconditional implications

of (3) that are most often used for estimation and inference.

The stochastic discount factor model is the most general representation of pricing, requiring

very few distributional assumptions beyond existence of moments and the convergence of sample

averages to their population analogues. Moreover the full machinery of the Hansen (1982) GMM

can be brought to bear on the estimation and inference problems. The majority of the empirical

methods described in the sequel can be seen as special cases for specific choices of stochastic discount
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factors and/or additional distributional assumptions. By far the most important case is that of

linear beta pricing in which the stochastic discount factor is assumed to be an affine function of a

set of observed factors, mt(δ) = δ0 − δ′1ft. To be consistent with the existing literature, we let δ

denote the model parameters in the stochastic discount factor formulation and (β, γ) denote the

factor loadings and factor risk premia in the corresponding linear beta pricing formulation, but note

that a mapping between the two sets of parameters exist (conditional on the first two moments of

the factors). The asset pricing tests specifically test the hypothesis that pricing errors of the chosen

set of test assets is small, in a suitable metric, either in absolute terms or relative to a reference

asset (e.g. the risk-free or the “market” portfolio).

2.1 The Stochastic Discount Factor Approach

The conditional moment conditions (3) can be analyzed using the Hansen (1982) GMM frame-

work. In particular, any p dimensional vector zt which is in the investors’ information set at time

t − 1 can be used as an instrument thus transforming the conditional moment condition into a

family of unconditional moment conditions indexed by the set of instruments zt chosen by the

econometrician:4

E[(Rtmt(δ)− 1N )⊗ z′t] = 0 (8)

where Rt is the vector of gross returns on N test assets and δ is the vector of m model parameters.

This of course includes (4) as a special case when zt ≡ 1. Defining the pricing errors u(Rt, δ) ≡

(Rtmt(δ)− 1N ) we have the l ≡ Np sample moments

gT (δ) =
1
T

T∑
t=1

f(Rt, zt, δ) , where f(Rt, zt, δ) ≡ u(Rt, δ)⊗ zt (9)

Under the null that the model is correctly specified, the sample moments gT (δ) should converge

to zero when evaluated at the true parameters, δ0 . But in general, the number of moments, l, is

strictly greater than the number of parameters, m, and it will be impossible to solve the system

of equations gT (δ) = 0. Instead, the GMM estimator is defined as the solution to a quadratic

minimization problem:

δ̂ = arg min
δ
gT (δ)′WT gT (δ) (10)

4In the hypothetical scenario where the econometrician’s instruments span the investors information set, the
conditional and unconditional moment conditions are equivalent. Otherwise the set of unconditional moments are
strictly weaker.
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where WT is a positive definite weighting matrix. Hansen (1982) shows that the optimal choice of

WT is WT = Ŝ−1
T , where ŜT is a consistent estimator of S = ACov

(√
TgT (δ0)

)
. With this choice of

weighting matrix, the associated GMM estimator, δ̃, is optimal, that is, its asymptotic covariance

matrix, (D′S−1
0 D)−1, is the smallest possible, where

D = E

[
∂f

∂δ
(Rt, zt, δ)

]
= E

[
∂h

∂δ
(Rt, δ)⊗ zt

]
,

which can be estimated by its sample analogue. Since the optimal weighting matrix depends on δ,

the GMM implementation is usually carried out in two steps. First, a consistent GMM estimator,

δ̂, is obtained by choosing an arbitrary positive definite WT (often the identity matrix) . Second,

based on δ̂, the optimal weighting matrix can be obtained in many ways. Newey and West (1987)

provide a simple estimator of S0,

ŜT = Ω0 +
cT∑
j=1

w(j, T )
(
Ωj + Ω′j

)
, w(j, T ) = 1− j

cT + 1
,

where

Ωj =
T∑

t=j+1

f(Rt, zt, δ̂)f(Rt−j , zt−j , δ̂)′,

and cT is a sequence of positive integers with cT → +∞ and cT /T
1/3 → 0 as the sample size T

goes to infinity. With the optimal weighting matrix WT = Ŝ−1
T , the optimal GMM estimator can

then be obtained. Hansen, Heaton, and Yaron (1996) investigate the finite sample properties of the

optimal GMM estimator as well as the estimator obtained by further iterating between estimation

of δ and S0.

When an asset pricing model is misspecified, it is of interest to obtain a measure of the degree of

mis-specification. This is possible when the number of moments exceeds the number of parameters,

m > l, so that there are (m− l) overidentifying restrictions which can be exploited for model mis-

specification tests. Hansen (1982) proposes a one-sided model specification test with an asymptotic

chi-squared distribution,

TJT (δ̃) = TgT (δ̃)′(Ŝ−1
T )gT (δ̃)

asy∼ χ2
m−l (11)

which rejects the null that the model is correctly specified if JT is too large. The first paper to test

asset pricing model restrictions using this technique was Hansen and Singleton (1982).

While statistically optimal, the pricing error metric implied by the optimal weighting matrix has

no economic interpretation. Moreover, since the optimal weighting matrix is the inverse spectral
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density matrix (at zero) of the moment conditions, it tends to reward more noisy pricing kernels

and the resulting value of the metric cannot be compared across models to assess relative goodness

of fit. In response to these concerns, Hansen and Jagannathan (1997) provide an alternative model

misspecification test, known as the Hansen and Jagannathan distance or HJ-distance. Hansen and

Jagannathan (1997) suggest using the matrix of second moments of returns on the test assets as

the weighting matrix. They show that this choice of metric corresponds to a natural measure of

misspecification as the minimum distance between the stochastic discount factor of an asset pricing

model and the set of stochastic discount factors that correctly price the test assets. Define y as the

stochastic discount factor associated with an asset pricing model, and M as the set of stochastic

discount factors that price all the assets correctly. The HJ-distance is defined as

δ = min
m∈M

‖m− y‖, (12)

where ‖X‖ =
√
E[X2] is the standard L2 norm. The HJ-distance can also be interpreted as a

measure of the maximum pricing error of a portfolio that has a unit second moment. Define ξ as

the random payoff of a portfolio. It can then be shown that

δ = max
‖ξ‖=1

|π(ξ)− πy(ξ)|, (13)

where π(ξ) and πy(ξ) are the prices of ξ assigned by the true and the proposed asset pricing model,

respectively.5 As Jagannathan and Wang (1996) point out, the model mis-specification test using

the HJ-distance is no longer asymptotically chi-squared but follows a mixed chi-squared distribution

whose critical values must be simulated.

2.2 Linear Beta Pricing

Most cross-sectional asset pricing studies going back to the earliest CAPM studies, consider the

case of a linear beta pricing restriction:

H0 : E[Rt] = γ01N + γ1β1 + · · ·+ γKβK , (14)

where E[Rt] is the vector of expected returns on N test assets, β1, . . . , βK are N -vectors of risk

exposures to K factors in the economy, and γ = (γ1, . . . , γK)′ is a vector of K risk premia. Since the

linear beta pricing approach requires the separate identification of risk exposures and risk premia,
5Notably, the definition ofM does not impose positivity (i.e. no-arbitrage) and Hansen and Jagannathan (1997)

define a second distance measure by restricting the admissible set of stochastic discount factors to be nonnegative.
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an assumption on the data-generating process must be made. For this reason, any test of H0 is

a joint test of H0 and the associated assumption on the data-generating process. The common

data-generating process is a multi-factor regression model,

rit = αi + βi1f1t + · · ·+ βiKfKt + εit, i = 1, . . . , N, t = 1, . . . , T, (15)

where

rit = the excess return (return in excess of the T-bill rate) on asset i in period t (1 ≤ i ≤ N),

fjt = the realization of the j-th factor in period t (1 ≤ j ≤ K),

εit = the disturbances or random errors,

and T is the number of time-series observations.

To see the connection with the stochastic discount factor representation, let mt(δ) = δ0 − δ′1ft
and consider the pricing of the ith asset:

E[mt(δ)Ri,t] = 1⇒ E[Ri,t] = γ0 + γ′βi

where

γ0 =
1

δ0 − δ′1E[ft]
, γ =

δ′1Var(ft)
δ0 − δ′1E[ft]

, βi = Var(ft)−1Cov(ft, Ri,t)

Thus there exists a close correspondence between the parametrization of the linear stochastic dis-

count factor model and the multi-beta pricing model, and Jagannathan and Wang (2002) show

that the two approaches are indeed asymptotically equivalent.6

Testing of the linear beta pricing hypothesis (14) is typically carried out using a one-step (time

series) or two-step (cross sectional) approach. The former focuses on measuring the size of alphas

and is applicable when factors are tradable assets and T > N . The latter focuses on gammas and

is applicable as long as factors are observable, even when N > T .

2.3 Time Series Approach

The time series approach to asset pricing tests takes one of two routes to approximating the true

finite sample distribution. In Section 2.3.1 and 2.3.2 we survey the early literature which derived

exact finite sample distributions of the tests under independence and joint normality. In Section
6In the special case where the factor mean and variance are known ex-ante, Kan and Zhou (1999) show that the

multi-beta pricing leads to more precise estimates than the GMM estimator that does not exploit this information.
Jagannathan and Wang (2002) show that, once moment conditions corresponding to the first two moments of the
factors are added in the GMM estimation, the two methods are again equivalent.
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2.3.3 we lay out the GMM approach which dispenses with most of the distributional assumptions

at the cost of relying instead on an asymptotic approximation to the true finite sample distribution.

Each approach has merits and which approach is chosen in a given study depends on whether serial

correlation, heteroskedasticity and non-normality are deemed important features of the data at

hand.

2.3.1 Portfolio Factors with Riskfree Asset

When a riskfree asset is assumed be available and factors are excess returns on tradable portfolios,

the factor risk premia can be separately identified as the factor means.

The asset pricing restrictions are

H01 : αi = 0, i = 1, . . . , N. (16)

which, in the single factor case with the factor equal the excess return on a market index, is the

well known CAPM restriction. Standard univariate ordinary least squares (OLS) regressions of

(15) provide estimates of both the alphas and betas for each test asset. Denote by α̂ the N -vector

of the alphas, and by Σ̂ the N by N matrix of the cross products of the estimated residuals divided

by T . If H01 is true, α̂ should be close to zero. Under the popular normality assumption that the

regression residuals are identically, and independently normally distributed, Gibbons, Ross, and

Shanken (1989) provide the following test, known as Gibbons, Ross and Shanken (GRS) test,

GRS =
(T −N −K)

N

α̂′Σ̂−1α̂

1 + F̄ ′Ω̂−1F̄
∼ FN,T−N−K(η), (17)

where F̄ and Ω̂ are the sample mean and sample covariance matrix of the excess returns on the

K reference portfolios. The exact finite sample distribution, FN,T−N−1, is the F distribution with

degrees of freedom N and T −N − 1 and noncentrality parameter η = [T/(1 + F̄ ′Ω̂−1F̄ )]α′Σ−1α.

Under the null, η ≡ 0, but in light of (17) the power of the test is easily computed under the

alternative.

In the special case of a single factor model,K = 1, when the single factor is the excess return

on a market index, rp,

rit = αi + βirpt + εit, (18)
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Gibbons, Ross, and Shanken (1989) offer an interesting economic interpretation of the GRS test,

GRS =
(T −N − 1)

N



√

1 + δ̂2q√
1 + δ̂2p

2

− 1

 , (19)

where δ̂p is sample Sharpe ratio of rp, and δ̂q is the sample Sharp ratio of the ex post efficient

portfolio, that is, the frontier portfolio consisting of all the assets and rp one would choose given

the ex post sample mean and covariance matrix as the true parameters. Hence, the GRS test

captures the relative deviations of the given portfolio rp from the ex post efficient portfolio in terms

of the Sharpe ratios. A higher GRS value implies rp deviates more from ex post efficiency, and

hence H01 will be rejected.

2.3.2 Portfolio Factors without Riskfree Asset

When the riskfree rate is unobserved or one is concerned about the difference between lending and

borrowing rates, the riskfree asset assumption may be relaxed. In this case, the zero-beta CAPM

replaces the CAPM. The earlier excess return regression (18), becomes

rit = αi + βirpt + εit, (20)

where all returns are the raw returns (i.e., without subtracting the T-bill rates). The zero-beta

CAPM asset pricing restrictions are

E[rit] = γ + βi(E[rpt]− γ), (21)

where γ is the expected return on the ‘zero-beta’ portfolio and rp is the return on any efficient

portfolio (i.e. not necessarily the market portfolio). Comparing (20)-(21), the restrictions translate

into the parametric restrictions,

H02 : αi = γ(1− βi), i = 1, . . . , N (22)

in the linear regression (20). Note that the ‘zero-beta’ rate γ is unknown and has to be estimated

from the data, and it enters the constraints by multiplication with other parameters. Hence, the

maximum likelihood estimator is not readily available from standard statistical or econometric

theory.7 However, conditional on the zero-beta rate, the solution is readily available as we saw in

the previous section. Shanken (1985) therefore suggests a profile likelihood approach.
7Gibbons (1982) is the first to numerically solve the maximum likelihood estimator while Kandel (1984) provides

an analytical solution to a restricted problem.
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Consider the general case of K factors or reference portfolios, so that (20) extends to

Rt = α+ βFt + εt, t = 1, . . . , T, (23)

where Rt is an N -vector of the asset returns, and F is a K-vector of the factors. Following Shanken

(1985) we define α(γ) = α− γ(1N − β1K) and rewrite (23) as

(Rt − γ1N ) = α(γ) + β (Ft − γ1K) + εt, (24)

The zero-beta restriction is α(γ) = 0, but conditional on γ, this is exactly the usual zero intercepts

hypothesis, whose likelihood ratio test is readily available,

LRT(γ) = T log
(

1 +
Q(γ)
T

)
, (25)

where

Q(γ) =
T α̂(γ)

′
Σ̂−1α̂(γ)

1 + (F̄ − γ1K)Ω̂−1(F̄ − γ1K)
, α̂(γ) = α̂− γ(1N − β̂1K),

where Ω̂ is, as before, the sample covariance matrix of the returns on the K reference portfolios.

Now note that the maximum likelihood estimator of γ is obtained by maximizing the likelihood

function under the zero-beta constraints, this is equivalent to minimize the LRT or Q(γ). Since

Q(γ) is a function of only one parameter, the estimator is then obtained as

γ̃ =
{ γ̃1, if A > 0;
γ̃2, otherwise.

(26)

where γ̃1 ≤ γ̃2 are the roots of the quadratic

H(γ) ≡ Aγ2 +Bγ + C

with

A = (1′KΩ̂−11K)(Z ′Σ̂−1α̂)− (1′KΩ̂−1F̄ )(Z ′Σ̂−1Z),

B = (1 + F̄ ′Ω̂−1F̄ )(Z ′Σ̂−1Z)− (1′KΩ̂−11K)(α̂′Σ̂−1α̂),

C = −(1 + F̄ ′Ω̂−1F̄ )(Z ′Σ̂−1α̂) + (1′KΩ̂−1F̄ )(α̂′Σ̂−1α̂),

and Z = 1N − β̂1K .8

8When K = 1, Zhou (1991) re-formulate the problem via an eigenvalue approach that makes it feasible to derive
the exact distribution of the likelihood ratio test. The exact distribution is unfortunately complex. Unlike the GRS
test, it depends on a nuisance parameter even under the null. Zhou (1995), and Velu and Zhou (1999) analyze the
case for K > 1 and provide simple distributional results that are useful for applications.
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2.3.3 Generalized Method of Moments

The finite sample distribution of the tests in the previous sections were derived under the assumption

of normality of asset returns. This assumption is, however, overwhelmingly rejected in the data (see,

e.g., Zhou (1994), who also provides small sample tests under elliptical distributions). Using the

framework of the Hansen (1982) GMM one can allow for general stationary and ergodic distributions

of asset returns at the cost of only achieving asymptotic distribution results.

MacKinlay and Richardson (1991) provide two GMM tests of the CAPM, and Harvey and Zhou

(1993) propose another such test.9

The factor regression model (18) implies the 2N moment conditions

E(εit) = 0 and E(εitrpt) = 0, i = 1, . . . , N.

To apply the GMM, let

gT (θ) =
1
T

T∑
t=1

ft(θ) , where ft(θ) =


ε1t
ε1trpt

...
εNt
εNtrpt


and θ = (α1, β1, . . . , αN , βN ). Note that there are exactly 2N moment conditions for the 2N pa-

rameters, and so the GMM estimator is independent of the weighting matrix, which is in fact the

same as the OLS regression estimator. But the GMM framework provides a new asymptotic covari-

ance matrix for α̂ that accounts for non-normality, in particular for conditional heteroskedasticity

of the data. Let Σ̂α be a consistent estimator of this covariance matrix. Then the hypothesis can

be tested by using the Wald test,

J1 = T α̂′Σ̂−1
α α̂

asy∼ χ2
N , (27)

which is an extension of the Gibbons, Ross, and Shanken (1989) test in the nonnormality case.

The second GMM test of the CAPM is to use Hansen’s model misspecification test. Imposing

the null that all the alphas are zero, then the restricted moment function grT (β) = gT (0, β) has

9While Hansen and Singleton (1982) is the first to apply the GMM to a consumption-based asset pricing model,
Harvey (1998) [<-Guofu, Please add to bib file] appears the first in the finance literature to apply the GMM
to a version of the conditional CAPM. Since these tests are straightforward to extend to K > 1 factors, we consider
only the one-factor case.
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only N free parameters which enter into the objective function quadratically. The associated GMM

estimator of β, β̃, can be solved explicitly, and so the test,

J2 = TgrT (β̃)′WT grT (β̃)
asy∼ χ2

N , (28)

is easy to implement. The third GMM test of the CAPM simply compares the restricted and

unrestricted model fit,

J3 = T [grT (β̃)′WT grT (β̃)− gT (β̂)′WT gT (β̂)]
asy∼ χ2

N , (29)

where WT is the weighting matrix in the unrestricted model.

Rather than using the optimal weighting matrix for estimating parameters, Zhou (1994) suggests

the use of a patterned matrix of the following form,

WT = W1 ⊗W2, W1 : N ×N, W2 : L× L, (30)

where N is the number of assets and L is the number of instruments. Although this will not yield

asymptotically the most efficient estimator, it often helps to solve the GMM estimation problem

analytically or semi-analytically because this special weighting matrix makes it possible to apply

the estimation results in the iid case. As demonstrated by Zhou (1994), this can be important in a

number of asset pricing models where a direct numerical solution to the GMM estimation problem

is hardly feasible. Based on the special WT and the associate GMM estimator, Zhou (1994) provides

an alternative GMM test,

Hz = T (MT gT )′VT (MT gT )
asy∼ χ2

NL−q (31)

where q is the number of parameters, VT is a diagonal matrix, VT = Diag(1/v1, . . . , 1/vq, 0, . . . 0),

formed by v1 > . . . > vq > 0, the positive eigenvalues of the following NL × NL semi-definite

matrix:

ΩT =
[
I −DT (D′TWTDT )−1D′TWT

]
ST
[
I −DT (D′TWTDT )−1D′TWT

]′
, (4.2)

whereMT is anNL×NLmatrix, of which the i-th row is the standardized eigenvector corresponding

to the i-th largest eigenvalue for i = 1, . . . , NL, DT is a consistent estimator of D, and ST is,

as before, a consistent estimator of the underlying covariance structure of the model residuals.

Cochrane (2001) provides an equivalent GMM test.

Applying the above methods, Velu and Zhou (1999) develop GMM tests for testing (1) when the

factors are portfolio returns and when there is no riskless asset. Ghysels (1998) examines structure
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changes in the GMM framework and its asset pricing implications, while Hall (2005) summarizes

various aspect of the GMM.

2.4 Cross-section Approach

The cross sectional two-step approach to testing asset pricing models was first developed by Fama

and MacBeth (1973) and Black, Jensen, and Scholes (1972), and the methodology has since been

adopted in many other areas of finance. In this section we discuss the classic two step approach as

well as some subsequent extensions.

2.4.1 The Fama-MacBeth Two-pass OLS

In the first pass, estimates of the betas are obtained by applying OLS to Eq. (15) for each asset.

Let β̂ = (β̂1, . . . , β̂K) be the resulting N ×K matrix of OLS beta estimates. In the second pass,

for each period t, one then runs a cross-sectional regression of Rt = (R1t, . . . , RNt)′ on X̂ = [1N , β̂]

to get an estimator of Γ = (γ0, γ1, . . . , γK)′ = (γ0, γ
′
a)
′,

Γ̂t = (X̂ ′X̂)−1X̂ ′Rt. (32)

The average,

Γ̂OLS =
T∑
t=1

Γ̂t/T = (X̂ ′X̂)−1X̂ ′R̄, (33)

is taken as the final estimator of Γ, where R̄ is the N -vector of sample means of the asset returns.10.

The standard OLS t-ratios are often used for testing whether the jth factor is priced,

t̂j =
γ̂OLS
j

ŝj/
√
T
, j = 1, . . . ,K, (34)

where γ̂OLS
j and ŝj are the sample mean and standard deviation of the j-th component of the time

series Γ̂t, t = 1, . . . , T . The p-values are usually computed from a t distribution with degrees of

freedom T − 1 or from a standard normal distribution. There are, however, a number of problems

associated with the common practice of the Fama-MacBeth two-pass procedure. For example,

the procedure ignores estimation error in the first pass betas, does not examine the overall pricing

errors, and assumes implicitly that the pricing restrictions are true in computing the t-ratios. These

issues will be examined in the following subsections.
10Some authors advocate using first pass betas estimated from a rolling window of past data, but the econometric

analysis more cumbersome.

14



2.4.2 Alternative Two-Step Estimators and Their Asymptotic Distributions

In the second pass, Shanken (1985), among others, propose the use of the following GLS estimator:

Γ̂GLS = (X̂ ′Σ̂−1X̂)−1X̂ ′Σ̂−1R̄, (35)

where Σ̂ is the estimator of the residual covariance matrix computed as the cross product of the

fitted factor model residuals divided by T , with T > (N + K) so that Σ̂ is invertible.11 A related

alternative estimator is a weighted least squares,

Γ̂WLS = (X̂ ′Σ̂−1
d X̂)−1X̂ ′Σ̂−1

d R̄, (36)

where the weighting matrix Σ̂d consists of the diagonal elements of Σ̂. Litzenberger and Ramaswamy

(1979) are perhaps the first to use this type of estimator in testing the CAPM. This estimator can

be used without the assumption of T > (N + K). All of the three two-pass estimators can be

written in the following form:

Γ̂w = ÂwR̄, Âw = (X̂ ′Ŵ X̂)−1X̂ ′Ŵ , (37)

where Ŵ is a symmetric weighting matrix. For example, the OLS estimator is obtained with Ŵ

equal to the identity matrix.

Under an iid assumption, Shanken (1992) provides the asymptotic covariance matrix for Γ̂w,

Υw = ACov(Γ̂w) = (1 + c)Ωw + Σ∗f , (38)

where c = γ′aΣ
−1
f γa, γa is Γ excluding the first element, Ωw = AwΣA′w, Aw is the probability limit

of Âw, and

Σ∗f =

[
0 0

0 Σf

]
, (39)

with Σf the population covariance matrix of the K factors. Asymptotically standard normal

“t-ratios” are then obtained by dividing the estimates by their asymptotic standard errors. It

follows that the Fama-MacBeth standard errors, computed as the time-series standard errors of the

estimated gammas, understate the true asymptotic standard errors by the amount cΩw which can

be important in certain applications. Moreover, the GLS estimator is asymptotically efficient.

11Kandel and Stambaugh (1995) show that the OLS estimator can be anything if one repackages the assets and if
the asset pricing model is not exactly true. However, the GLS estimator will be robust to such repackaging.
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Dispensing with the iid assumption, Jagannathan and Wang (1998) extend the asymptotic

results about Γ̂w and, under very general distributional assumptions, show that the asymptotic

covariance matrix of Γ̂w is given by

Υw = DΨD′ +DΠD′ −D
(
Γ + Γ′

)
D′, (40)

where D = (X ′WX)−1X ′W with X = [1N β], and

Ψ =
+∞∑

k=−∞
E
[
h1
t (h

1
t+k)

′] , Γ =
+∞∑

k=−∞
E
[
h1
t (h

2
t+k)

′] and Π =
+∞∑

k=−∞
E
[
h2
t (h

2
t+k)

′]
with h1

t = Rt − E[Rt], h2
t =

[
(Ft − E[Ft])′Σ−1

f γa

]
εt, the consistent estimators of which are easily

obtained by their sample analogues.

Shanken and Zhou (2007) provide two GMM estimators. For simplicity, we review only the first

one here. The model moment conditions are

E

[
εt ⊗

(
1

Ft

)]
= E

[
Rt − α− βFt

(Rt − α− βFt)⊗ Ft

]
= 0. (41)

Let gT be the sample moments:

gT (θ) =
1
T

T∑
t=1

εt(θ)⊗ zt, NL× 1, (42)

where θ = (λ′, β′1, . . . , β
′
K)′ is the vector of parameters, L = K + 1 and zt = (1, F ′t)

′. The GMM

estimator requires the solution of

minQ = gT (θ)′WT gT (θ), (43)

under the constraint (14), where WT , NL×NL, is a positive definite weighting matrix. With the

choice of WT = Ŝ−1
iid , where

Ŝiid = Σ̂⊗

(
1
T

T∑
t=1

ztz
′
t

)
. (44)

the associated GMM estimator is in fact numerically identical to the maximum likelihood (ML) es-

timator of Shanken and Zhou (2007). The advantage of the GMM framework is that the asymptotic

covariance matrix of the ML estimator is now given by the standard GMM theory as

Σ̂θ = (D′TWTDT )−1D′TWTSTWTDT (D′TWTDT )−1, (45)

where DT , NL × (NK + L), is the matrix of derivatives of gT (θ) with respect to the parameters

and ST is a consistent estimator of the covariance matrix of the GMM moment conditions. This
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formula allows to obtain standard errors for the risk premium estimates for any weighting matrix

WT . Based on this, the associated “t-ratios” can then be computed and are asymptotically valid

under conditional heteroskedasticity and/or serial correlation of the data.

2.4.3 Model Misspecification Tests

The Fama-MacBeth standard errors and t-ratios are only valid when the cross-sectional restric-

tions (14) hold exactly.12 It is hence of interest to test whether these restrictions are true in any

application.

Shanken (1985) and Shanken (1992) provide a simple specification test of (14) against a general

alternative,

Qc = T (R̄− γ̂GLS
0 1N − β̂γ̂GLS

a )′Σ̂−1(R̄− γ̂GLS
0 1N − β̂γ̂GLS

a )/(1 + ĉ), (46)

where Γ̂GLS = (γ̂GLS
0 , γ̂GLS′

a )′ and ĉ is a consistent estimator of c with the GLS weighting matrix.

Statistically, (T −N+1)Qc/(T (N−K−1)) is approximately F -distributed with degrees of freedom

N −K − 1 and T −N + 1. Qc summarizes the estimated pricing errors across assets weighted by

Σ̂−1, with an adjustment in the denominator for errors in the betas. The larger the pricing errors,

the larger is the observed value for Qc. Intuitively, if (14) is true, Qc should not be “too far” from

zero, as the errors will be random. On the other hand, if (14) does not hold then there will be

systematic deviations as well, resulting in larger values of the observed test statistic. Roll (1985)

provides an interesting geometric interpretation of Qc when the factor is the return on a benchmark

portfolio. An identical test statistic is obtained if the sample covariance matrix of asset returns is

substituted for the residual covariance matrix in Qc.

In the present multi-beta model, the stochastic discount factor y is a linear function of K

common factors F , given by

y(λ) = λ0 + F ′λ1 = x′λ, (47)

where x = [1, F ′]′ and λ = [λ0, λ
′
1]′. Given λ, the vector of pricing errors of the test assets is given

by

g(λ) = q − E[px′λ] = q −Dλ, (48)

12Theoretically, Roll and Ross (1994), show the regression slope can be zero if the factor is not exactly on the
efficient frontier and even if it is very close to it.
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where D = E[px′] and it is assumed to be of full column rank. The squared HJ-distance then has

an explicit expression

δ2 = min
λ
g(λ)′U−1g(λ) = q′[U−1 − U−1D(D′U−1D)−1D′U−1]q, (49)

where U = E[pp′] is assumed to be nonsingular.

In many empirical studies, p is chosen to be the gross return on N test assets, denoted as R2.

Let Y = [f ′, R′2]′ and define its mean and variance as

µ = E[Y ] ≡

[
µ1

µ2

]
, (50)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
. (51)

Using these notations, we can write U = E[R2R
′
2] = V22+µ2µ

′
2 and D = E[R2x

′] = [µ2, V21+µ2µ
′
1].

Since the elements of R2 are gross returns, we have q = 1N and it is easy to show that the λ that

minimizes δ2 is given by

λHJ = (D′U−1D)−1(D′U−11N ), (52)

and hence the squared HJ-distance of (49) with q = 1N is

δ2 = 1′N [U−1 − U−1D(D′U−1D)−1D′U−1]1N . (53)

Shanken and Zhou (2007) provide some additional tests. Note that all of the three two-pass

estimators converge to the same limit when the null is true. However, when (14) is false, the

estimators can differ even systematically. Shanken and Zhou (2007) show that the asymptotic

distribution of the difference of two different two-pass estimators provides a simple chi-squared

model specification test,

Jγ = T (Γ̂OLS − Γ̂GLS)′[(1 + ĉ)Π̂aΣ̂Π̂′a]
−1(Γ̂OLS − Γ̂GLS)

asy∼ χ2
K+1, (54)

as T →∞, where Π̂a = (X̂ ′Σ̂−1X̂)−1X̂ ′Σ̂−1−(X̂ ′X̂)−1X̂ ′ is of rank K+1. In addition, one can use

the likelihood ratio test and two GMM tests based aforementioned two GMM estimators. Shanken

and Zhou (2007) provide a small sample comparison of these various tests via simulation.

2.4.4 Distribution Under Model Misspecification

Almost all studies using the two-pass procedures implicitly assumes that the asset pricing restriction

(14) is true and then go ahead to obtain the standard errors of the risk premiums under the null.
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What happens when this restriction is violated, as is likely to be the case in practice? It is hence

of interest is to know the asymptotic distribution of the two-pass estimators under the alternative.

Whether the restriction is true or not, we can always project the expected return vector E[Rt]

onto X = [1N , β],

E[Rt] = XΓw + ηw, (55)

where

Γw = (X ′WX)−1X ′WE[Rt] (56)

is the coefficient vector of the weighted projection and ηw is the projection residual or (true) pricing

error vector.

Assuming normality, Shanken and Zhou (2007) show that

√
T (Γ̂w − Γw)

asy∼ N(0,Υw + Υw1 + Υ′w1 + Υw2) (57)

where Υw is given in (38),

Υw1 = −(X ′WX)−1

(
0

Σ−1
f γwaη

′
wWΣ

)
WX(X ′WX)−1, (58)

which vanishes for the GLS estimator, and

Υw2 = (X ′WX)−1
[
(η′wWΣWηw)(Σ∗f )−1 + (η′w ⊗X ′)Vw(ηw ⊗X)

]
(X ′WX)−1, (59)

where (Σ∗f )−1 denotes the following matrix

(Σ∗f )−1 =

[
0 0

0 Σ−1
f

]
. (60)

In the GLS case, Υw2 is given by

Υw2 = (η′wΣ−1ηw)
[
(X ′Σ−1X)−1(Σ∗f )−1(X ′Σ−1X)−1 + (X ′Σ−1X)−1

]
. (61)

In the WLS case,

Υw2 = (X ′Σ−1
d X)−1

[
(η′wΣ−1

d ΣΣ−1
d ηw)(Σ∗f )−1 +X ′HwX

]
(X ′Σ−1

d X)−1, (62)

where Σd consists of the diagonal elements of Σ and Hw is an N ×N matrix whose (i, j) element is

given by Hijw = 2σ2
ijηiwηjw/(σ

2
iiσ

2
jj), with ηiw the i-th element of ηw. With OLS, Vw is zero and so

Υw2 is given by the first term of (59) only. Joint normality is, therefore, not required in this case.
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The asymptotic covariance matrix of the two-pass estimator has three new terms in addition to

the usual Υw when the null hypothesis is violated. They relate to the product of the Âw matrix and

the pricing error vector, ηw. Υw2 is the covariance matrix of this product while Υw1 is its covariance

with the original disturbance terms that are present in the absence of misspecification. Although

Υw +Υw1 +Υ′w1 +Υw2 is obviously positive definite, it is not clear whether it is greater than Υw or

not. Intuitively, the interaction between the pricing errors and the errors in β̂ introduces additional

“noise” that can reduce the precision of the risk premium estimates.

2.4.5 Traded Factors

Previous two-pass procedures treat the factors as non-traded. But in applications, it is often the

case that some of the factors are traded. Suppose f1 is a traded factor, the multi-beta pricing

should imply that

γ1 = E[f1t]. (63)

This says that we can simply estimate the factor risk premium by its sample mean, as is the case

with the CAPM in which the market risk premium can be estimated by the sample mean of the

market excess returns. In two-pass studies, the restrictions about the premiums on traded factors

are usually ignored, or put differently, zero pricing error of factors is not impossed. As emphasized

by Lewellen, Nagel, and Shanken (2009), models in studies that focus on the cross-sectional fit do

not seem reasonable when they imply unrealistic risk premium estimates or zero-beta rates.

2.4.6 Latent Factors

Roll (1977) points that the true factors may be never observable, and this raises the issue of

testability. Shanken (1987), and Kandel and Stambaugh (1987) consider the issue of factor proxies.

The Ross (1976) arbitrage pricing theory implies multi-beta pricing restrictions even when the

factors are latent or unobservable by an econometrician. Lehmann and Modest (1988) and Connor

and Korajczyk (1988) are early tests of the APT based on the maximum likelihood method and

asymptotical principal component analysis. Geweke (1996) provide a Bayesian treatment of the

pricing errors. Based on recent advances in Bayesian Markov chain Monte Carlo (MCMC) methods,

Nardari (2007) test the APT in a new class of linear factor models in which the factors are latent

and the covariance matrix of excess returns follows a multivariate stochastic volatility process.
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2.4.7 Characteristics

The beta pricing model (14) can be augmented to include firm characteristics,

E[rit] = γ0 + λ′Zi + γ′aβi, i = 1, . . . , N, (64)

where λ is an M -dimensional constant vector representing the characteristics rewards, and βi is

a K vector of firm i’s betas on the K factors. The use of firm characteristics can be viewed

as either an extension of an imperfect asset pricing model or a device to detect misspecification

errors. For example, Black, Jensen, and Scholes (1972) used residual variance and Banz (1981)

used the firm size to examine the validity of the CAPM. Fama and French (1992) use the book-to-

market ratio and provide evidence that this variable explains a larger fraction of the cross-sectional

variation in expected returns. Other important characteristics that have received attention in the

recent empirical literature are momentum and liquidity. Jagannathan and Wang (1998) provide a

thorough econometric analysis of the Fama-MacBeth two-pass procedure and derive an asymptotic

covariance matrix similar to (40).

3 Empirical Studies

We survey the main findings in the empirical asset pricing literature, starting with the early tests

of the capital asset pricing model developed by Sharpe (1964), Lintner (1965) and Treynor (1965)

building on the pioneering work by Markowitz (1959).

3.1 The CAPM and Linear Factor Models

The main testable implication of the Black (1972) CAPM is that the slope of the security market

line should equal the market risk premium and the intercept should be a measure of the (shadow)

risk-free rate. The main obstacle to testing this hypothesis is the noise associated with the estimated

betas which leads to an errors-in-variables problem first identified by Miller and Scholes (1972).

To alleviate this problem, Black, Jensen, and Scholes (1972) suggest forming portfolios by sorting

on betas, a procedure which has since become standard practice in the literature: Estimate betas

based on history, sort assets using historical betas, group them into portfolios for a selected number

of years, and rebalance portfolios periodically. As long historical betas contain information about

future betas this procedure will alleviate the measurement error problem while producing portfolios
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with sufficient dispersion in betas. Black, Jensen, and Scholes (1972) find support for the CAPM

albeit the intercept term is too large and the slope term is less than the observed average excess

return on the stock market. Fama and MacBeth (1973) using the novel two-step procedure described

in Section 2.4.1, also find that the CAPM cannot be rejected.

The primary empirical challenges to the CAPM come from several well-documented anomalies:

Managed portfolios constructed based on certain firm characteristics appear to earn very different

returns on average from those predicted by the CAPM. Notable among the anomalies that challenge

the validity of the CAPM are the findings that the average returns on stocks is related to firm

size (Banz (1981)), earnings to price ratio (Basu (1985)), book-to-market value of equity (BM)

(Rosenberg, Reid, and Lanstein (1985)), cash flow to price ratio, sales growth (Lakonishok, Shleifer,

and Vishny (1994)), past returns (De Bondt and Thaler (1985) and Jegadeesh and Titman (1993)),

and past earnings announcement surprise (Ball and Brown (1968)). These anomalies are not a

isolated phenomena of US data nor of a particular choice of sample period. Numerous subsequent

studies have confirmed the presence of similar patterns in different datasets and time periods,

including those of international markets.13

Fama and French, in a series of papers, make a convincing case that CAPM fails to describe the

cross-section of stock returns (Fama and French (1992, 1996, 1997, 1998, 2004 and 2006)). They

apply as simple technique to convincingly refute the CAPM. First, sort stocks into portfolios based

on a given stock characteristic or combination of characteristics that produces a spread in average

returns and check whether the spread in returns can be explained by a spread in betas. Using

firm size and book-to-market value as the characteristics, Fama and French (1992) show that the

CAPM can be overwhelmingly rejected in the data. Fama and French (1993) conjecture that two

additional risk factors, in addition to the stock market factor used in empirical implementations of

the CAPM, are necessary to fully characterize economy-wide pervasive risk in stocks. The Fama and

French (1993) three-factor model (FF3) has received wide attention and has become the standard

model for computing risk-adjusted returns in the empirical finance literature, although it too has

trouble explaining the return on certain types of stocks such as small value stocks. However, the

interpretation of the two additional Fama and French factors as risk factors is still the subject of

much debate. Jagannathan and Wang (1996) and Campbell (1996) argue that human capital is an

important part of the total wealth portfolio and including it in the definition of the CAPM market

13Schwert (2003) argues that most of the anomalies are more apparent than real and often disappear after they
have been noticed and publicized.
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protfolio significantly improves the CAPM pricing performance.14 A forceful argument is made by

Ferson, Sarkissian, and Simin (1999) who argue that returns on portfolios constructed using stock

attributes may appear to be useful risk factors, even when the attributes are completely unrelated

to risk.

A significant strand of the literature argues that the empirical failure of factor pricing models

is not due to mis-measurement or omission of risk factors but to market inefficiencies. Lakonishok,

Shleifer, and Vishny (1994) argue that high book-to-market stocks earn a higher return because

they are underpriced to start with, and not because they have higher exposure to systematic risk.

Consistent with that point of view, Daniel and Titman (1997) find that firms’ characteristics help

explain the cross-section of returns. Piotroski (2000) provides evidence consistent with the presence

of mispricing by showing that among high book-to-market stocks firms with better fundamentals

outperform the rest. Mohanram (2005) reaches a similar conclusion for low book-to-market stocks.

Ang, Hodrick, Xing, and Zhang (2009) find that idiosyncratic volatility is related to low returns

even after controlling for systematic risk factors

A final source pricing error in asset pricing tests are market frictions. Brennan and Subrah-

manyam (1996) and Brennan, Chordia, and Subrahmanyam (1998) find that security characteristics

like liquidity measures and trading volume are important in explaining the cross section of stock

returns. Similarly, Easley, O’Hara, and Hvidkjaer (2002) find that information risk (related to

liquidity) is also important in explaining the cross section of stock returns.

3.2 Conditional CAPM

The CAPM of Sharpe (1964), Lintner (1965) and Black (1972) is cast is inherently static. The

model predicts that the unconditional expected return on a security is a linear function of the

market risk premium and the associated beta. Merton (1980) extends the CAPM to the following

dynamic form:

E[Rit | It] = γ0t−1 + γ1t−1βit−1, (65)

14The need for more than one factor was also emphasized by Connor and Korajczyk (1988), Connor and Korajczyk
(1993), Lehmann and Modest (1988) and Lehmann and Modest (2005) who used statistical methods to extract
additional factors from the cross section of stock returns.Bansal, Hsieh, and Viswanathan (1993) on the other hand
find support for nonlinear factor models.
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where It is the investors’ information set at time t, γ0t−1 is the conditional expected return on a

zero-beta portfolio, γ1t−1 is the conditional market risk premium, and

βit−1 = cov(Rit, Rmt | It−1)/var(Rmt | It−1),

the conditional beta.

Jagannathan and Wang (1996) show that the conditional CAPM is related to an unconditional

two factor model

E[Rit] = γ̃0 + γ̃1βi + γ̃2βi
γ (66)

where βγi captures the covariation of stock i’s conditional beta with the market risk premium.

Jagannathan and Wang (1996) argue that time variations in betas and their comovement with the

market risk premium can explain part of the mispricing relative to the CAPM.

For the conditional CAPM model to have any bite, there must be significant covariation of betas

and the market risk premium over time. Ferson and Harvey (1991) and Ferson and Korajczyk (1995)

find that betas vary over the business cycle in a systematic stochastic way. Several empirical studies

suggest that value stocks may be more risky when the risk premium going forward is high, thus

offering at least a partial explanation to the value premium. For example, Petkova and Zhang

(2005) find that value betas tend to covary positively, and growth betas tend to covary negatively

with the expected market risk premium. Why are value stocks more risky when expected risk

premium is high? Zhang (2005) provides one explanation: It is more costly for value firms to

downsize their capital stocks since they are typically burdened with more unproductive capital. As

a result, the value stocks’ returns covary more with economic downturns when the expected risk

premium is high.

More recently, a number of studies have provided empirical evidence against the conditional

CAPM. Lewellen and Nagel (2006) use high frequency returns to argue that the variation in betas

and the equity premium would have to be implausibly large for the conditional CAPM to explain

the magnitude of the value premium. However, Chan, Hameed, and Lau (2003) demonstrate

that price and return may be in part driven by factors unrelated to fundamental cash flow risk.

Such factors, together with liquidity events, may contaminate the estimation of beta at higher

frequencies (see Pastor and Stambaugh (2003)). Bali, Cakici, and Tang (2009) improve the cross-

sectional performance of the conditional CAPM by using more efficient estimation techniques. In

addition, a recent study by Kumar, Srescu, Boehme, and Danielsen (2008) demonstrate that once
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the estimation risk or parameter uncertainty associated with beta and risk premium are accounted

for, the conditional CAPM will have significantly more explanatory power in the cross-section and

may explain the value premium after all.

3.3 Real Options

Most firms have the option to turn down, undertake, or defer a new project, in addition to the

option to modify or terminate an existing project. Therefore, a firm can be viewed as a collection

of existing and future projects and complex options on those projects. McDonald and Siegel (1984)

observe that a firm should optimally exercise these real options to maximize its total value. The

resulting firm value will consist of both the NPVs of the projects and the value of associated real

options which is determined by how those options are expected to be exercised by the firm. Dybvig

and Ingersoll (1982) and Hansen and Richard (1987) show that, while the CAPM will assign the

right expected returns to the primitive assets (projects), it will in general assign the wrong expected

returns to options on those primitive assets. It is therefore plausible that the theory of real options

may explain the value premium.

Berk, Green, and Naik (1999) build on that insight and present a model where the expected

returns on all projects satisfy the CAPM but the expected returns on the firm’s stocks do not.

Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Cooper (2006), and

Zhang (2005) provide several additional insights by building on the Berk, Green, and Naik (1999)

framework. Anderson and Garcia-Feijoo (2006) and Xing (2008) find that the BM effect disappears

when one controls for proxies for firms’ investment activities. Bernardo, Chowdhry, and Goyal

(2007) highlight the importance of separating out the growth option from equity beta. Jagannathan

and Wang (1996) argue that because of the nature of the real options vested with firms, the

systematic risk of firms will vary depending on economic conditions, and the stock returns of such

firms will exhibit option like behavior. An econometrician using standard time series methods may

conclude that the CAPM does not hold for such firms, even when the returns on such firms satisfy

the CAPM in a conditional sense.

3.4 Consumption Based Asset Pricing

Consumption based asset pricing is derived from the first order condition determining the repre-

sentative households optimal consumption plan in general equilibrium. In absence of any frictions,
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the household Euler condition states that, along the optimal consumption path, for any asset i we

have the relationship:

u′(ct) = βE
[
u′(ct+1)Ri,t+1 |It

]
(67)

where β is the households subjective discount factor and It is its information set at time t. Com-

paring (3) and (67) we see that the Euler equation has the powerful implication that the stochastic

discount factor should be a function of the expected increase in the marginal utility of consumption,

mt ≡
βE[u′(ct+1)|It]

u′(ct)
(68)

a result first applied to asset pricing by Breeden (1979) and in its full GMM implementation by

Hansen and Singleton (1982). However, the low volatility of the observed aggregate consumption

growth has lead to a number of empirical challenges for the naive consumption based model. To

explain the observed market risk premium identified by Mehra and Prescott (1985), a very high

curvature of the utility function is required implying that households are extremely risk averse

which does not match well with other dimension of the data such as the low observed riskfree rate.

Several solutions have been proposed in the literature. Parker and Julliard (2005) and Yogo

(2006) show that using a broader measure of consumption improves the pricing performance of the

consumption based model while Jagannathan and Wang (2007) show that it measuring consumption

from Q4 to Q4 is beneficial. Other authors have proposed more complicated utility functions

as a possible solution. Dunn and Singleton (1986), Eichenbaum, Hansen, and Singleton (1988),

Sundaresan (1989), Constantinides (1990) and Eichenbaum and Hansen (1990) investigate internal

habit formation while Abel (1990) and Campbell and Cochrane (1999) consider external habit

formation. More recently, Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008) have

shown that long run risk models, in which small but highly persistent innovations to consumption

growth and the volatility of consumption growth can have large pricing implications, are able to

resolve many of the shortcomings of the basic consumption based asset pricing model.

4 Summary

In this review we discussed econometric methods that are available for evaluating the extent to

which a given asset pricing model is able to explain the cross section of returns on various financial

assets. Given the vast nature of the literature, we had to necessarily restrict our discussion to
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a subset of the articles. We hope that our review will provide the necessary background for the

readers to go over the other article in the literature on their own.
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