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Modeling Non-normality Using Multivariate t:
Implications for Asset Pricing

ABSTRACT

Many important findings in finance are based on the normality assumption, but this assump-
tion is firmly rejected by data due to fat tails. In this paper, we propose using a multivariate
t-distribution, which fits well the data, as a simple alternative to examine the robustness of many
existing results. We find that, under the multivariate ¢-distribution, the asymptotically most ef-
ficient estimator of the expected return of an asset can be drastically different from the sample
average return. For example, the annual difference in the estimated expected returns under normal
and ¢ is 2.1% for the Fama and French’s (1993, 1996) smallest size and book-to-market portfolio.
In addition, there are also substantial differences in estimating Jensen’s alphas, choosing optimal
portfolios, and testing asset pricing models when returns follow a multivariate ¢-distribution instead

of a multivariate normal distribution.



Ever since Fama (1965), Affleck-Graves and McDonald (1989), Richardson and Smith (1993), and
Dufour, Khalaf and Beaulieu (2003), among others, there is strong evidence that stock returns
do not follow a normal distribution. Despite this, the normality assumption is still the working
assumption of mainstream finance. The reason for the wide use of the normality assumption
is not because it models financial data well, but due to its tractability that allows interesting
economic questions to be asked and answered without substantial technical impediments. Thus,
many important findings in empirical finance are based on the normality assumption. The question

is whether these findings are robust to alternative multivariate distributional assumptions.

The multivariate t-distribution is a well known alternative to the multivariate normal distri-
bution. In the econometrics literature, Chib, Tiwari and Jammalamadaka (1988), Van Praag and
Wesselman (1989) and Osiewalski and Steel (1993), among others, provide attractive methodologies
for analyzing elliptical models, of which ¢ is a special case. However, to our knowledge, the litera-
ture focuses on model errors, not the joint distribution of all the regression variables. In finance,
it is exactly this joint modeling that is of interest. As it turns out, both parameter estimation and
the associated asymptotic theory are substantially different from the usual case of modeling model

errors.

In this paper, we advocate the use of a multivariate t-distribution to model jointly the stock
returns, develop the associated asymptotic theory and examine the robustness of some of the major
empirical results that are based on the normality assumption. There are three major reasons for the
use of a t-distribution.! First, it models financial data well in many circumstances. Theoretically,
the t-distribution nests the normal as a special case, but it captures the observed fat tails of
financial data. For example, the multivariate normality assumption of the joint distribution of
Fama and French’s (1993) 25 assets returns and their 3 factors from July 1963 to December 2015
is unequivocally rejected by a kurtosis test with a p-value of less than 0.01%. On the other hand,
such a test for a multivariate ¢-distribution with 7 degrees of freedom has a p-value of 26.88%.
Although the t-distribution is symmetric, its sample skewness is highly volatile that can generate

the observed sample skewness in the data with high probability. Second, with the algorithms

!Blattberg and Gonedes (1974) seems the first to use t-distribution to model stock returns in finance. Later
applications of ¢t-distribution and generalized ¢-distribution in the univariate case can be found in Theodossiou (1998),
and references therein. Although MacKinlay and Richardson (1991), Zhou (1993), and Geczy (2001) use multivariate
t, their analysis focus on how results under normality vary when under multivariate ¢ without providing the results
estimated based on the multivariate ¢-distribution assumption.



provided here, the t-distribution has become almost as tractable as the normal one. Traditionally,
non-normal distributions, such as the ¢, do not yield easy parameter estimation, making their use
limited to low dimensional problems. As a result, the normal distribution has been almost the only
choice in analyzing a large number of assets due to its analytical formulas for parameter estimates.
However, this is no longer a decisive advantage of the normal. Owing to the path breaking EM
algorithm of Dempster, Laird and Rubin (1977), and especially Liu and Rubin (1995), explicit
iterative formulas are available to obtain fast and monotonically convergent parameter estimates
under the . The third reason supporting the use of a ¢t-distribution is that asset pricing theories that
are valid under normality are usually also valid under ¢. For example, the well-known Capital Asset
Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) is still valid under ¢ (see Chamberlain
(1983) and Owen and Rabinovitch (1983)).

Comparing with the normal distribution, the ¢ adds only one more parameter. Nevertheless,
this parsimonious extension allows us to capture a salient feature of the return data (i.e., the fat
tails). Admittedly, the ¢-distribution does not describe all the features of the return data like time-
varying volatility for which the well-known GRACH models are very useful. However, the GARCH
effect is generally much weaker in monthly return data as compared with daily return data, so it is
not totally unreasonable to ignore the GARCH effect for a typical asset pricing study that involves
monthly data. In addition, the GRACH models require difficult numerical optimization to obtain
the estimated parameters, which usually limits applications to no more than ten assets (see, e.g.,
Bollerslev, 2001). In contrast, there are 28 assets and over 400 parameters in our later applications.
While it is difficult for us to solve the optimization problem in the GARCH framework, the EM
analytical iterations under ¢ take less than a minute to find the solutions. Hence, the key advantage
of the t is its tractability, the same reason for the wide use of normality. It should also be pointed
out that the widely used generalized method of moments (GMM) estimators of Hansen (1982)
allows for a much more general distributional assumption than the normal. However, the GMM
estimators of important parameters, such as the expected asset returns, alphas and betas, are
the same as the those obtained under the normality assumption, except that the GMM standard
errors are enlarged to account for non-normality. In contrast, the EM algorithm here provides the

asymptotically most efficient estimates when the data is ¢ distributed.

Assuming that asset returns are t rather than normally distributed, we find that our under-



standing of certain major issues in finance is drastically altered. First, there is a substantial and
economically important difference in estimating expected returns of assets. For example, the ex-
pected excess return for Fama and French’s (1993) SMB factor is 0.221%/month when estimated
under normality, but is only 0.102%/month when estimated under multivariate ¢t with 7 degrees
of freedom, implying an annual difference of 1.428%. This difference is of significant economic
importance in estimating the cost of capital. Moreover, such differences are even larger for some of
the 25 portfolios used by Fama and French (1993). For instance, the annual difference in estimated
expected return is 2.1% for the portfolio that is in the smallest size and book-to-market quintiles.
In fact, over our sample period, most of the estimated expected returns of the Fama and French’s
(1993) 25 portfolios are lower under ¢ than under normality. The intuition is that the normality
assumption suggests using a sample average return which has equal weights on the observations in
estimating the expected return. In contrast, the estimator under ¢-distribution assigns less weight
to data points that are far away from the center, so the estimated expected return can be sub-
stantially different from the sample average in the presence of fat tails. Indeed, the returns over
the months that are considered to be outliers during our sample period tend to have more posi-
tive returns than negative ones. Assigning less weights to these outliers results in a shift of the
estimated mean leftward.? However, the standard deviations of the asset returns estimated under
either normality or ¢ are fairly close. This suggests the estimation of the mean is more sensitive
to fat tails of the data, consistent with the conventional wisdom that estimating asset standard

deviation is easier than estimating its mean.

Second, estimation of Jensen’s alpha relies critically upon the distributional assumption on the
data. In finance, if both the asset returns and the factors are random and jointly ¢, the regression
model residuals must be conditionally heteroskedastic, a case not studied in the econometrics and
statistics literature on t distributions. We develop both the estimation technique and the associated
asymptotic theory, and apply them to examine both the Fama-French portfolios and a set of mutual
fund data. We find that some alphas of the Fama-French portfolios can substantially change once
the normality assumption is replaced by a suitable ¢. With the mutual fund data, the performance
ranking of a mutual fund can change drastically under normal versus under t. In some cases, a

loser fund with an estimated alpha of —0.451%/month under normality becomes a winner fund

2The shifting of the estimated mean to the left is specific to the sample period because it is possible that there
might be more negative outliers than positive ones over another subperiod to result in the shifting rightward.



with estimated alpha of 0.067%/month under an optimally estimated ¢-distribution. On the other
hand, a winner fund with an estimated alpha of 1.328%/month under normality turns into a loser

with an estimated alpha of —0.727%/month when estimated under the ¢.

Third, the t-distribution sheds new insights in testing asset pricing models. Due to strong
rejection of the underlying normality assumption, one should be cautious in interpreting the results
from the well-known Gibbons, Ross, and Shanken (1989, GRS) test that relies on the normality
assumption. Indeed, MacKinlay and Richardson (1991) and Geczy (2001) both suggest that the
GRS test statistic should be reduced to reflect the fat tails of the data. However, this reduction
of the GRS test statistics comes at a cost. Namely, the test has lower power after the adjustment.
We propose using a likelihood ratio test of the asset pricing restrictions that are based on the
multivariate t-distribution. Interestingly, we find that there are indeed cases where the GRS or
adjusted GRS test fail to reject, while our test based on the t-distribution does. In the case where
all test results agree, it is still interesting to know the robustness of the conclusion because the data
behaves more like t-distribution than the normal. This suggests that non-normality modeling by
using the t-distribution helps us not only in obtaining better estimates of asset expected returns,

but also in providing more powerful and reliable tests of asset pricing restrictions.

The remainder of the paper is organized as follows. The next section provides the empirical
evidence that makes the case for modeling the data as t distributed rather than the normal. Sec-
tion 2 presents both the estimation technique under ¢-distribution and a comparison of the results
with those obtained under normality. Section 3 discusses how performance evaluation of mutual
funds differs under the normal and ¢-distribution assumptions. Section 4 assesses asset pricing
implications of the t-distribution. Section 5 discusses some general issues and extensions. Section 6

concludes.

1. Why Multivariate t?

In this section, we provide a description of the return data that we use, followed by a formal
test of both univariate and multivariate normality. The empirical results show that the multi-
variate normality assumption is unequivocally rejected by the data, but a suitable multivariate

t-distribution cannot be rejected.

1.1. The data



In recent empirical studies, Fama and French’s (1993) 25 portfolios, formed on size and book-
to-market, are the standard test assets in empirical asset pricing studies. As a result, we will focus
our analysis on these 25 portfolios plus their associated three factors to provide potentially highly
valuable non-normality information on this widely used data set. The data are monthly returns
available from French’s website.? In addition, we also use the monthly returns on the one-month
Treasury bill to construct the excess returns on the 25 size and book-to-market ranked portfolios.

Altogether, there are n = 28 excess returns from July 1963 through December 2015.

1.2. Normality tests

Our first question is whether the data can be adequately described by a normal distribution.
To answer this, let z; = (r}, f{)’, where r; represents the excess returns of N = 25 portfolios and
f+ represents the excess returns of k = n — N = 3 factors at time ¢. Following Mardia (1970)
and many multivariate statistics books (e.g., Seber, 1984, p.142), we consider tests based on the

following multivariate skewness and kurtosis,
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are the sample mean and covariance matrix of x;, respectively. There are two desirable proper-
ties of Dy and D,. First, they converge, as sample size increases to infinity, to their population

counterparts

o =E([e-wviy-w’), a=E([a-wV-w]), (5)

where p and V' are the population mean and covariance-matrix of z, and y is a random variable that

has the same probability density as x, but is independent of z. Under the normality assumption, §;

3We are grateful to Ken French for making this data available on his website. The Matlab programs for this paper
will be available on our website.



is simply zero, and 09 is equal to n(n+2). The second property is that D; and Dy are invariant to any
linear transformations of the data. In other words, any non-singular repackaging of the assets will
not alter the multivariate skewness and kurtosis. Due to this invariance property, one can assume,
without any loss of generality, that the true distribution has zero mean and unit covariance matrix
for the purpose of computing the exact distribution of D; and Ds. As demonstrated by Zhou
(1993), the exact distribution can be computed up to any desired accuracy by simulating samples
from the standardized hypothetical true distribution of the data without specifying any unknown
parameters. Tu and Zhou (2003) also use this idea to provide an exact test for normality. To

achieve reliable accuracy, we use 100,000 draws in what follows.

This procedure can also be applied to test whether or not the data follow a suitable multivariate

t-distribution with v degrees of freedom. The multivariate ¢ density function is given by
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where U = (vr—2)V/v is a scale matrix whose use in place of V' is standard which simplifies formulas
later. It is clear that this density approaches the multivariate normal as v goes to infinity, and
hence the usual multivariate normal distribution is a special limiting case of multivariate ¢. In order
to apply the earlier procedure, one simulates data from a standard multivariate t-distribution and

the empirical rejection rates can then be computed the same way as before.

Table 1 reports the results. Consider first both the univariate and multivariate sample kurtosis
of the data which are in the seventh column of the table. It is seen that the univariate values are
all greater than 3, the population value under normality. Indeed, the p-values of the univariate
kurtosis test, reported in the next column in percent, all reject normality for each of the assets.
Given the strong rejection of the univariate kurtosis test, it is not surprising that the p-value based
on the multivariate kurtosis test is less than 0.01%. Hence, multivariate normality is unequivocally
rejected by the data. On the other hand, if we assume that the data is from a multivariate t¢-
distribution with degrees of freedom v = 8, 7 and 6, the p-value goes up from 4.18% to 26.88% and
80.44%. Therefore, a multivariate ¢-distribution with v = 7 is not rejected by the data, neither is

the one with v = 6.

Consider now both the univariate and multivariate skewness tests. The sample skewness statis-

tics are provided in the second column. For the measure of univariate skewness, what we actually



report in Table 1 is the more common measure of univariate skewness
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71 is related to the Mardia’s measure of skewness by the relation Dy = 42, so for a two-tailed test
of zero skewness, it does not really matter whether we use v, or Dy. However, reporting v, allows
us to find out if the returns are positively skewed or negatively skewed. From Table 1, we find that
the skewness of individual portfolios are mostly negative but in general very small so that there
are many portfolios that pass the test even under the normality assumption. The multivariate
skewness test, however, strongly rejects the normality assumption and even a ¢ with v = 8 at the
usual 5% level. Nevertheless, the multivariate skewness test and many of the univariate skewness
tests cannot reject a multivariate ¢-distribution with ¥ = 7 or 6, a conclusion similar to what we
obtain using the kurtosis test. The reason is that the finite sample variation of the sample skewness
of a t-distribution is very large when v is small, so as to imply a large probability for observing a
large sample skewness even though the true distribution, assumed multivariate ¢ here, is actually

symmetric.

Although in the entire period we find many portfolios have negative sample skewness, further
examination of the data shows that the sign of the sample skewness is not stable across subperi-
ods. This suggests that the negative sample skewness is only a sample specific phenomenon, not
necessarily a feature of the data that we have to model here.* In contrast to the behavior of the
sample skewness, the sample kurtoses are all very large and significantly different from normality
across subperiods. This indicates that the fat tails are indeed a salient feature of the data that we

have to account for and we do so here by advocating the use of the t-distribution.

A question arises as to which value of v, 7 or 6, is a better model for the data. To understand
the impact of the degrees of freedom on the p-values of the kurtosis test, consider as an alternative

a popular kurtosis measure, the standardized one:
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where the last equality follows for a t-distribution. Under normality, x = 0, so x measures the

excess kurtosis relative to the normal. Equation (8) implies that the population kurtosis goes to

1A skewed t-distribution of Branco and Dey (2001) may be useful in applications where the skewness is too large
to use the standard ¢, but not here as the skewness estimate is insignificant. See Harvey, Liechty, Liechty, and Miiller
(2010) for an excellent survey and new developments on skewness studies.



infinity as v goes down to 4. Hence, no matter how large the sample kurtosis is, one can always
find a t-distribution to describe it with a small enough v. Although the p-value for the sample
kurtosis test is greater with a smaller v (but greater than 4), it does not imply a smaller v actually
fits the data better. It is because the sample kurtosis can in fact falls out of a reasonable left tail
of the distribution when v is too small. For example, the p-value of 80.04% when v = 6 implies
that the observed sample multivariate kurtosis falls into the 19.96% mass of the distribution from
the left, and it is no better than the p-value of 26.88% for the case of v = 7. Later on, we report
an estimate of v = 7.5385 based on the maximum likelihood method, which is determined by the
entire distribution of the data rather than by a particular moment. However, these are all point
estimates of v, and we cannot be sure which one is closer to the true v. For the sake of robustness,
we report most of our results based on three different values of v (6, 7 and 8), so we can determine

whether our reported results are sensitive to the choice of degrees of freedom.

2. Impacts on Estimating Mean, Variance and Sharpe Ratios

After rejecting multivariate normality and accepting multivariate t-distribution as a good al-
ternative distribution for the data in the previous section, we now proceed to present the EM al-
gorithm that elegantly solves the parameter estimation problem under multivariate ¢-distribution.
With these estimates, we can then address the impact of the multivariate ¢-distribution assumption

on estimated expected returns, variances and Sharpe ratios.

2.1. EM Algorithms and asymptotic theory

Under normality, the asymptotically most efficient estimate of © and V are their sample ana-
logues, i and V. The accuracy of the sample averages to estimating the population mean can be

judged by its asymptotic variance-covariance matrix,”

Avar[p] = V. 9)

This expression is in fact exact for all jointly independent and identically distributed (i.i.d.) returns.
The sample average [ is the asymptotically most efficient estimator under normality because it is
in this case also the maximum likelihood estimator. However, as shown below, it will no longer be

the most efficient estimator once the normality assumption is removed since the likelihood function

%In this paper, we use Avar[f] to stand for the limiting variance of VT (6 — ) as T — oo, where 6 is a consistent
estimator of 6.



will be different.

Indeed, under multivariate t-distribution, the asymptotically most efficient estimator of the
parameters is the solution of maximizing the log-likelihood function based on the multivariate ¢

density,

T
log £ = constant — 3 log |¥| —
v

T
v —5 o ;bg [1 + D Gt ) . (10)
Unlike the log-likelihood function in the normal case, this one does not allow the combination of
terms to yield a simple explicit solution to its maximum. Moreover, a direct numerical optimization
is extremely difficult as the number of parameters is 434 = n + n(n + 1)/2, where n = 28 in our

application to Fama and French’s (1993) 25 assets plus 3 factors.

Fortunately, with the path breaking EM algorithm of Dempster, Laird and Rubin (1977), and
especially Liu and Rubin (1995), we can use the following explicit iterative formulas to find the
parameter estimate that maximizes the log-likelihood function under multivariate ¢-distribution,
i.e., the solution to maximizing £. Starting from any initial estimate of p and ¥, say ,u(l) = [1 and

¥ =¥ = (v —2)V /v, we can obtain iterative estimates via
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where u, ’ is an auxiliary variable whose meaning as well as why the algorithm works are discussed

: (12)

in the Appendix. Clearly, the above EM algorithm is simple to program and easy to implement.
Mathematically, the solutions monotonically converge to fi and U that maximize equation (10),
the log-likelihood function under ¢. Indeed, in our application to Fama-French 25 assets and three-
factors, the algorithm converges with less than 100 iterations and it takes less than a minute to run

on a PC.

However, we should remark that the degrees of freedom v here is assumed known. This may
be reasonable because the likely values for v can be assessed by using the kurtosis test. When one
is concerned about the fact that v is unknown, one can treat v as an additional parameter and

estimates it directly from the data. Then the following extended algorithm due to Liu and Rubin



(1995) can be used. Starting with any initial estimate of v, say 7 = 7, one can update a new

estimate of v in the (7 + 1)-th step by solving

s =0 (“5") -0 (3) +lox (an)+}g[logw?“)(u))—uﬁ"“)(u) F1=0, ()

where ¢(v) = dlogI'(v)/dv is the digamma function and
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Hence, the earlier EM algorithm can be combined with this one so that it is still applicable when
v is treated as an unknown parameter. It should be noted that equation (14) does not admit
an analytical solution, so the implementation is more complex than the earlier case of a known
v. However, equation (14) involves only one variable and its solution is easy to find by using a
line-search routine. Therefore, even with an unknown v, practical implementation of the algorithm
is still straightforward. Indeed, even if we treat v as unknown in implementing the EM algorithm,
it still converges in less than a minute in our applications. Moreover, regardless of what starting
value of v chosen, the algorithm has always quickly converged to an estimated value 7 = 7.5385 for

the Fama-French data set that we studied earlier in Section 1.

Therefore, even if one is less willing to simply use several values of v to assess the sensitivity of
v on the statistical inference, one can estimate v easily and then use this estimated value instead
in carrying out both the statistical computations and economic evaluations. This approach clearly

makes little qualitative difference in our applications here.

While the EM algorithm provides an elegant solution to the maximum likelihood estimation
problem, it is only valuable if there is an efficiency gain over the sample averages. Like the normality
case, a simple analytical expression is available to assess the accuracy of the ¢ estimates. Based on
Lange, Little and Taylor (1989), the asymptotic variance-covariance matrix of f is, for v > 2,

2n +4

Avar(p) = (1= p)V, P m

(16)

This says that, when the data is multivariate ¢ distributed rather than the multivariate normal,
the sample mean fi is no longer the asymptotically most efficient estimate of u, but the maximum
likelihood estimator i is. The relative efficiency is measured by p. The greater the p, the better

the maximum likelihood method. In our application with n = 28, v = 7, we have p = 0.2449,

10



implying that the maximum likelihood estimator fi is 24% less volatile than the sample mean.®

It is interesting to observe that this improvement in estimation accuracy is independent of the
parameter values of ;4 and V. In addition, the relative efficiency increases when n increases. Under
normality, the sample average return of an asset is the asymptotically most efficient estimator of
its expected return, and the inclusion of other assets will not alter this estimate. In contrast,
under the multivariate ¢-distribution, realized returns from one asset contain useful information on
estimating the expected return of another asset, as shown later by empirical results and a simple
analytical example. The greater the number of assets, the more efficient the fi. Moreover, the
relative efficiency increases when v gets smaller. This makes intuitive sense: the smaller the v,
the greater the deviation of the data from normality, and hence the greater the gain from using a

procedure that incorporates non-normality into estimation.

Similarly, one can ask what the efficiency gain is for estimating the variance of asset returns by

the maximum likelihood method under multivariate ¢-distribution. In the Appendix, we show that

22n+4+v(n+5)]
v(iv—1)(v+n)

Avar[Vi;] = (1 — p,)Avar [V, Pu

(17)

Again, the improvement in estimation accuracy, p,, is independent of the true parameters. In
1

1 _ 1 .
addition, as Avar[V,?] = Avar[Vj;]/(4Vi;) and Avar[V,?] = Avar[Vj;]/(4Vii), we have

"

Avar[V»%] =(1- pv)Avar[Vi-%], (18)

2 7

SO py is also the efficiency gain for estimating the standard deviation of asset returns by the
maximum likelihood method under multivariate t-distribution assumption. When n = 28 and v = 8,
we have p, = 39.59%. This says that compared with the sample variance or standard deviation,
the maximum likelihood procedure under ¢ improves the estimation efficiency in estimating the

variance or standard deviation by about 40%.

Besides the fundamental parameters of asset means and variances, Sharpe ratios of a given
portfolio is of great interest in practice. Because of this, Lo (2002) devotes an entire article to
the derivation of the asymptotic theory for estimating them. He answers the question that how
accurately the usual sample Sharpe ratios that are constructed based on the sample mean and

variance. Given our improved estimates on the means and variances, it is naturally to ask the

5Tt should be noted that the asymptotic variance of fi is the same whether v is known or unknown, so the efficiency
gain of using i does not depend on whether we know v or not.
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question that how much the optimal ML estimates under multivariate t-distribution can improve

upon the usual estimate of the Sharpe ratio.

Let w be an n x 1 vector of portfolio weights, and R,; = w'R; be the return of the portfolio
at time t. Then the theoretical and unobservable Sharpe ratio of the portfolio is 6, = p,/0, =
w’,u/(w'Vw)%. The usual sample estimate is 0, = fi,/5, = w’ﬂ/(w/f/w)%, and the estimate that
is based on the ML under multivariate ¢ is 6, = fi,/5, = w’ﬂ/(w’Vw)%. Based on (16), (17), and

using the delta method, it can be shown that

R 0% (v —
AV&I“[HP] =1 + 217((1/_43)) (19)
and
. v+n+2 (v +1)
Avar[Hp] = m - T (20)

In our applications here with n = 28 and v = 7, it is clear that Avar[ép] =1+ 62 and Avar[f,] =
0.755 + 0.60492. Hence, regardless the exact combination of the portfolio, the new estimate that
is based on the ML under multivariate ¢ has at least a 24% reduction in asymptotic variance as

compared with the traditional sample estimator.

2.2. Empirical results

After providing the estimation method and the associated asymptotic theory, we now present the
empirical results on the expected returns and the standard deviations, the fundamental parameters
of the Fama-French data. The second column of Table 2 reports the sample average returns, while
the next three columns are the maximum likelihood estimates of the expected returns under a
t-distribution with v = 8, 7 and 6, respectively. As discussed earlier, a value of v = 7 appears
to be a good model for the data, but the results on two other values are provided to assess the
sensitivity of the results to the specification of v. It is striking that the expected returns estimated
under ¢ for most of the assets are smaller than those estimated under normality. For example, the
sample average excess returns for the size (SMB) factor is 0.221%, but their estimated expected
excess return under multivariate ¢ with v = 7 are only 0.102%, implying an annual difference
of 1.428%. Such differences in some of the portfolios are even larger. For instance, the S1B1 and
S1B4 portfolios have an annual difference of 2.1% and 2.22% between the two estimates of expected

return, respectively.
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To understand further the intuition why the difference is so large for S1B1, consider, for sim-
plicity, that we try to fit its returns using a univariate t-distribution whose log-likelihood function

is

2 2 (0

where r; is the return on S1B1 at time ¢ and p = E[ry]. It is easy to see, from the score function,

T
T 1 — p)?
log £ = constant — — log() — v g log (1 + (n,u)) ; (21)
v
t=1

that the maximum likelihood estimator of y is a solution of

T
> wiry — p) =0, (22)
t=1

T
f= Z Wi, (23)
t=1

where w; = ¢/(v 4 ;) with & = (r; — p1)%/1 and ¢ is a constant such that S"— w; = 1. Tt is clear
that §; measures how far the data is from its center. Since w; is a decreasing function of ¢;, outliers
are weighted less than other data points in the computation of fi. In contrast, the sample mean
weights all data points equally with weight 1/7. When the true distribution has fatter tails than
the normal, the sample mean becomes less efficient when compared with the maximum likelihood
estimator, and the estimated mean under ¢ can shift leftward or rightward depending on the tail
behavior of the actual data. In a multivariate setting, similar results follow. Now, to see why
the expected return of S1B1 estimated under ¢ is much smaller than its sample mean, we need to
examine the relationship between r, and &;. In Figure 1, we provide plots of r; against d; for S1B1
and MKT. The upper part of Figure 1 provides the plot for SIB1. As we can see, for the months
that are considered to be outliers (i.e., large d;) by the multivariate t-distribution, the portfolio
S1B1 have mostly large positive returns. By down-weighting these large positive monthly returns,
the resulting maximum likelihood estimate of the mean of S1B1 is therefore substantially lower than
the sample mean. In contrast, as shown by the lower part of Figure 1, while the market returns
are mostly positive during the months that have large d;, they are not unusually large. Therefore,

the mean of the market when estimated under ¢ is not all that far away from the sample mean.

Using a similar data set, Knez and Ready (1997) also find that the size effect is significantly
reduced if one drops a small percentage of influential observations from the entire sample (see their
Tables 11T and VI). However, dropping influential observations completely cannot be easily justified

statistically, so it is unclear whether one should rely more on the sample mean from the trimmed
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sample or on that from the original data. Instead of dropping outliers, our approach simply puts
less weights on the outliers. Such a strategy can be justified statistically because it is based on the
likelihood principle to improve estimation efficiency. As a result, we can have more faith here that

the size effect is indeed smaller than what is shown by the sample mean of SMB.

In contrast to the sharp differences in the estimated means, the standard deviations are not much
different when estimated under either normal or ¢t. For example, as shown in Table 2, while there
is a huge difference in the two estimates of expected returns, S1B1 has similar standard deviations
using the sample one ‘71%1 = 7.942% (per month) and the maximum likelihood one 171%1 = 7.582%
under the t-distribution with 7 degrees of freedom. The same is also true for the market excess
return whose standard deviations in the two cases are 4.440% and 4.474%, very close to each other.
The small differences in estimating the standard deviations are consistent with the general belief
that it is easier to estimate the second moments than the first moments of returns. Indeed, the
estimated standard error of Vé for S1B1 is only 0.316% when v = 7, so the estimate 7.942% is very
accurate. While the estimated standard error of ji; is also 0.316%, the sample mean of S1B1 is only
0.221%, so a standard error of 0.316% suggests that the estimate of the mean is very imprecise.
Therefore, the difference between this normal mean estimate and the ¢ one can be much greater

than the difference in estimating the standard deviations.

3. Jensen’s Alpha

In evaluation of mutual fund performance, Jensen’s alpha is one of the most widely reported
measures despite its restrictive assumptions. We show in this section that a relaxation of the
normality assumption to a more reasonable ¢ can generate drastically different rankings for mutual
funds. To see this, we develop first the theory associated with estimating the alphas and betas
under multivariate ¢-distribution assumption, and then apply them to mutual fund performance

analysis.

3.1. The multivariate ¢ regression model

Recall that z; = (r}, f;)’, where r; contains the excess returns of N test assets and f; contains

the excess returns of k (= n — N) factors. Then we have the usual multivariate regression,
re=a+ Bft+e, (24)

where ¢; is an N x 1 vector of residuals with zero mean and a non-singular covariance matrix. To
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relate o and 8 to the earlier parameters u and V', consider the corresponding partition

,LL: ,LLl y V:
12

Under the usual multivariate normal distribution, it is clear that the distribution of r; conditional

Vit Vig

. (25)
Vor Voo

on f; is also normal and
Elrd| fi] = i+ ViaVay' (fi — pa), (26)

Var[re|fy] = Vi1 — Vi2Viy' Var. (27)

Therefore, the parameters «, 5 and the earlier parameters u, V obey the following relationship:
a = 1 — Bua, B=ViaVi'. (28)
Denote X as the covariance matrix of ¢,
¥ = Var[e;] = Vi1 — ViaViy ' Var. (29)

It should be noted that under the multivariate normality assumption, ¥ is also the variance of €
conditional on f;. However, once the normality assumption is removed, this will not necessarily be
the case. Indeed, when the data follow a multivariate t-distribution with v degrees of freedom, the
mean of r; conditional on f; is still a linear function of f; as above, but the conditional covariance
matrix is no longer a constant, but rather a quadratic function of f;:

v—2+ (fi — p2)' Voo (ft — p2)
v+k—2

Var[r|fi] = 3. (30)

This says that the conditional variance of the t-regression residuals vary with time, and hence is

conditionally heteroskedastic.

The conditionally heteroskedasticity is a key feature of our multivariate ¢ regression model
versus those in the econometrics and statistics literature where f; is treated as fixed and ¢ is
assumed to be multivariate ¢ distributed with a constant covariance matrix (see, e.g., Chib, Tiwari
and Jammalamadaka, 1988, Van Praag and Wesselman, 1989, Osiewalski and Steel, 1993, and
references therein). In contrast, f; here is jointly random with the asset returns, and the conditional
covariance matrix of ¢; is time-varying.” As shown below, this will have important implications for

both parameter estimation and asset pricing tests.

"Relying on this property, Laplante (2003) provides an interesting model of the joint distribution of returns and
information signals in his study of market timing with conditional heteroskedasticity.
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To assess the estimation accuracy of the alphas and betas under multivariate ¢-distribution
assumption, we need to derive the associated asymptotic standard errors of the estimates which are
not available previously. The ML estimates of & and B under multivariate t-distribution assump-
tion are easily obtained from equation (28) by replacing p and V' with their maximum likelihood
estimates. The key issue is how accurate & and B are when compared with the OLS estimates. It
can be shown (see the Appendix) that the N(k + 1) parameter formed by them has an asymptotic

variance-covariance matrix:

vefim ] - (W)

In contrast, the usual OLS estimators & and § have an asymptotic variance-covariance matrix of

(52) + b Vg iz —pih Vs

® 2. (31)
—Vig' 2 Vaa'

Avar

(32)

& ] T (22) Vit — (422) Vi
Avar =

vee(B) ~(B)vale (2w

It follows that the percentage improvement of the maximum likelihood estimator under multivariate

t-distribution, &, over & is

2 4 ~1
<U+n+2> (2) + 1y Vs o 2 SRR (h) 15 Voo iz
van S (2) Vit | 1 (2) Vs e
The lower bound of the percentage improvement is 2(n + 2)/(v(v + n)), which is reached when
1ty Vo 12 — 0. The upper bound is 2(n+4)/[(v — 2)(v+n)], which is reached when iy Vyy' 12 — o0.
When n = 28 and v = 7, the percentage standard reduction of & ranges from 24.49% to 36.57%.

Similarly, the percentage improvement of B is:

v+n+2
1— vtn 2(n + 4) (34)
v—2 '
v=2 (v—=2)(v+n)

When n = 28 and v = 7, the percentage variance reduction of B is 36.57%.

3.2. Empirical alpha estimates

Table 3 provides the estimates of the alphas and betas under normality and ¢ (with v = 7) for
the Fama-French data. It is seen that there can be large differences in the alpha estimates. For
example, the estimated alphas for S5B4 and S5B5 are —0.212% and —0.151% under multivariate
normal distribution, but change to —0.138% and —0.224% under the multivariate ¢-distribution
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with v = 7. In contrast, the differences in the beta estimates are much smaller in percentage terms.
For both the MKT and SMB factors, the betas are virtually the same under either multivariate ¢
or multivariate normal. However, there are some substantial differences in the HML betas. The
HML betas for S3B2 and S4B2 have reduced significantly from 0.173 and 0.190 to 0.054 and 0.080.
Overall, it appears that the usual OLS betas are fairly accurately estimated, but the alphas are
not. As a result, there is a great value of obtaining more accurate estimate of « for both asset

pricing tests and performance evaluation.

We now examine Jensen’s alpha for mutual funds which are more relevant in practice. The
mutual fund returns data are available from the Center for Research in Securities Prices (CRSP).
We consider only domestic equity funds. For funds with multiple classes, we only consider the class
with the longest history. Out of this subset of funds, we select the ones with complete monthly
return data in the last 5 or 10 years at the end of December 2015. In this way, we obtain 5266 and
1967 funds, respectively.

Consistent with many studies and reports, we compute a mutual fund’s alpha based on the
traditional CAPM. There are two questions of interest. First, among funds with negative sample
alphas, what is the percentage of funds with the sign of their alphas reversed when estimated based
on a reasonable t-distribution? Moreover, what is the magnitude of the reversals? Similarly, we

can ask the same questions for funds that have positive sample alphas.

Table 4 reports the results using mutual funds in the past five years from January 2011 to
December 2015. The first panel provides the results on reversals from under-performance to over-
performance. The panel reports five funds that have the greatest reversals as measured by the
difference of estimated alphas under normality and under ¢t whose degrees of freedom is treated as
unknown and estimated from the data. For example, iPath ETN Global Carbon Class A shares’s
alpha changes from a negative value of —0.451% per month to a positive value of 0.067% per month.
The reason for the huge shift of the alpha value is because the estimated degrees of freedom of the
t-distribution has a value of 7.6 (not reported in the table), which implies a distribution that is
quite different from the normal. For comparison, we also provide those alphas under fixed degrees
of freedom for the t-distribution, and find similar results. Among all the 5266 funds there are 2.28%
of them that have reversals from negative alphas to positive ones. To assess the magnitude of the

reversals, the average difference of the reversed funds, 0.081%/month, is reported at the last row
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of the first panel.

The next panel provides the corresponding results for reversals from over-performance to under-
performance. One apparent feature is that the magnitude of the reversals seems much larger than
in the first panel. For example, Direxon Daily Small Cap Bear 3X shares has a huge alpha value
of 1.328% per month under the normality assumption, but this value is significantly reduced to a
negative alpha of —0.727% per month. In addition, the average magnitude of the reversals is now

0.151%, quite a bit more than the 0.081% in the previous panel.

While the percentage of funds that see reversal of the signs of their estimated alphas is not too
high, it does not imply the ¢-distribution has small impact on the estimated alphas. There can be
funds that see substantial changes in its estimated alphas under but yet the signs of the estimated
alphas remain the same under both distributional assumptions. To further assess the difference
in estimated alphas under the normal and ¢, the last panel of the table reports the percentage of
funds for which the difference in estimated alphas is greater than 1% to 5% per year. As reported
in the table, there are 11.62% of the funds whose alpha estimates under the two distributional
assumptions differ by 1% or more per year. This is clearly a high percentage, which indicates many
mutual funds have outliers in their monthly returns. In fact, there are still 1.86% of the funds

whose alpha estimates differ by 3% or more per year.

Table 5 provides corresponding results for 1967 funds whose return data is available for 10 years
from January 2006 to December 2015. With the increase in the length of sample period to 10 years,
we now see even more reversals of estimated alphas in Table 5 than in the case of Table 4, mostly
due to the fact that there is a higher probability of observing more extreme observations with a
longer sample period. Overall, the fund returns data suggests economically significant differences
in alpha estimates under normality versus under the ¢. Clearly, it is important to examine the
economic reasons why fund return data is so fat-tailed and what institutional or compensation
design may exasperate it. However, such a study goes beyond the scope of the current paper as our
focus here is to provide empirical evidence that the estimated alpha is sensitive to the underlying
normality assumption. Another question is that what alternative measures can one use that are less
sensitive to the normality assumption? Refining Jensen’s alpha, Cohen, Coval and Péstor (2003)
provide an interesting and more accurate measure that pools information across funds. It is of

interest to examine whether this new measure captures some of the kurtosis of the data.
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4. Asset Pricing Tests

The popular method for testing the factor pricing model is a multivariate test of the following

standard parametric restrictions:

Ho . OéZON (35)

in the multivariate regressions of

Tt:Oé—i—Bft—l-Gt, t=1,...,T. (36)

Under multivariate normality assumption, this can be tested by the well-known Gibbons, Ross,

and Shanken (1989) test,

T-N-k V314
GRS = < ) aA AiA ~ FNT-N—ks (37)
N 14 fi5Vay fi2

where & and 3 are obtained from either linear regressions or from the relations between them and /i
and V. Under the multivariate normality assumption, it is well-known that the GRS test is simply
a transformation of the likelihood ratio test. However, once the multivariate normality assumption
on (r, f;) is replaced by a multivariate ¢t-distribution assumption, one should be cautious in using

the GRS test as it is no longer valid under the multivariate ¢-distribution assumption on (7}, f/)’.

Now, if the returns follow a multivariate ¢-distribution with v degrees of freedom, we can also
easily estimate the parameters under the null to obtain a likelihood ratio test based on the likelihood
function under ¢. Under the null, (u, ¥) can be mapped into (3, ¥, ua, ¥o2) by the following

relation:

i [ B2 ] , (38)

12

| BYRp + T [Ty
V= { oo 8! W ] (39)

where U, = (v — 2)%/v. With an initial estimate of (3(!), \Iigl),uél), \I'%)), the EM algorithm for
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the estimation of (5, W, p2, Waz) can be obtained by the following iterative procedure:

(i) vV+n
vt (re=p07) (29) 7 (o= B0R) + (F- ) (82) " (F-i8))

B - - -1
i) :( (z)fX(z)) (X(an(z)) 7 (43)
1 /- o) 3641 /
B = 2 (VO - O (YO - g0 567 (44)
T i)
B - e )
D1 U
T
~ (i 1 i ~(i+1 ~(i+1)Y)’
Uy = 5wy (ft — s, )> (ft — i, )) : (46)
t=1

and the iteration can start from, say, the estimates under the multivariate normality assumption
as before. With the restricted parameter estimates denoted by fi, and U,, we can compute the
likelihood ratio test under the multivariate t-distribution assumption:

T—(NJ/2)—k—1
T

e =2 ( ) [fow 201, 9) ~ tog 20 #)] 13 (47)

where log L(-,-) is the log-likelihood function under ¢ given by (10). Note that, analogous to the
normality case, we use the Bartlett correction factor T'— (N/2) — k — 1 instead of T in the likelihood
ratio test statistic because it can substantially improve the small sample properties of the likelihood

ratio test statistic.®

In the above procedure, we assume the degrees of freedom v is known. When v is unknown, we
need to modify the procedure. Under the alternative, we can easily estimate v by introducing an
extra step in the iteration to update v as outlined in (14). Under the null of @ = O, we can also

update v in the (i 4+ 1)-th step by solving (14) except that ul(fﬂ)(v) is defined as

(i+1) . v+n

o= v+ (xt _ ﬂgﬂ))’ (\WH))_I (xt _ ﬂgm))

Therefore, we can compute the likelihood ratio test under the multivariate ¢-distribution assumption

. (48)

8See Muirhead (1982, Theorem 10.5.5) for a derivation of this Bartlett correction.
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even when the degrees of freedom are unknown:

T (N/2)—k—1
T

LRT = 2 ( ) [log (7, ¥.7) — 108 £(jir. Br.5)] A X (19)

where U and 7, are the ML estimates of v under the alternative and null, respectively.

As the CAPM of Sharpe (1964) and Lintner (1965) is of fundamental importance in finance,
it is of interest to use it as a first example to illustrate our test. This amounts to testing (35)
with the single and theory-motivated market factor in (36). Table 6 reports the testing results
based on the GRS test and the likelihood ratio test when the test assets are Fama and French’s
(1993) 25 size and book-to-market ranked portfolios. Over the entire sample period of July 1963
to December 2015 as well as two subperiods, both tests reject the CAPM strongly with virtually
zero p-values, whether we assume the underlying distribution is multivariate normal or multivariate
t. However, given the strong rejection of the multivariate normality assumption, one cannot draw
firm conclusions about the rejections from test statistics that assume multivariate normality. With
the test developed here also reaffirming the rejections reached by the GRS test under multivariate
normality, one can claim that the rejection is indeed caused by the failure of the model rather than
the violation of the restrictive multivariate normality assumption. Hence, even in cases both the
GRS and the multivariate t-distribution based tests have the same conclusions, the latter is still of
interest because it says that the GRS conclusion is robust in those case. Without the latter, there

is of no way of knowing whether the GRS test is reliable at all due to its false assumptions.

More interestingly, though, it is not always the case that the two tests give rise to the same
conclusion. In Table 7, we report the multivariate tests of the Fama and French (1993) 3-factor
model using the same test assets as in Table 6. While both the GRS test and the likelihood ratio
test under the multivariate t-distrubution reject the Fama-French 3-factor model using the full
sample period, there are difference in the results of these two tests in the subperiods. For example,
in the first subperiod of July 1963 to September 1989, we find that the GRS test does not reject
the Fama-French at even the 10% level, but the likelihood ratio test computed under multivariate
t with v = 8, 7, 6, or unknown degrees of freedom all suggest rejection of the Fama-French 3-factor
model at the 5% level. This is clearly a case where the multivariate ¢ based test makes a difference
by suggesting the Fama-French 3-factor model fails to hold in the first subperiod while the GRS

test is unable to do so.?

9 Although not reported here, we apply the same analysis to 10 size-sorted portfolios of the NYSE and find cases
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There are two questions on the rejection by the LRT. First, does the rejection of LRT due
to small sample problem? Without doing a full blown simulation experiment on the finite sample
distribution of LRT, we cannot give a definite answer. But this is unlikely because LRT for the
normal case gives a p-value that is very close to the one from the GRS test, which indicates that
with the Bartlett adjustment and the sample size that we have, the asymptotic distribution provides
a reasonably good approximation of the finite sample distribution of LRT. Second, can a suitably
adjusted GRS test that is valid under ¢ reject the null? Geczy (2001) provides an adjusted GRS

test that has an approximate F-test under ¢ distributed returns,

GRS, = <T - x —h ) EO v (50)
L+ (1+k)agVay fi2
where k is the standardized kurtosis as defined by (8). Although not reported in the table, the
p-values of this test are not much different from those of the standard GRS test. For example,
in the first subperiod where the GRS test does not reject and has a p-value of 17.07%, GRS, has
p-values of 20.34%, 21.46% and 23.74% under ¢ with 8, 7 and 6 degrees of freedom, respectively. An
intuition for GRS, having less power than LRT is that the former is based on inefficient parameter
estimates when the returns are multivariate ¢ rather than multivariate normal, while the latter

utilizes the optimal estimates from the maximum likelihood method.

5. Extensions and Future Research

Like many empirical asset pricing and corporate finance studies, we assume that the asset returns
are i.i.d. over time. Moreover, they have a multivariate t-distribution at any time. Although the
multivariate t-distribution is restrictive, it is more general and more realistic than the widely used
multivariate normality assumption, and contains the normal as a special limiting case. In statistics,
multivariate ¢-distributions are used extensively for robustness analysis of data that exhibit fat
tails (see, e.g., Lange, Little and Taylor (1989), Vasconcellos and Cordeiro (2000), and references
therein). Because stock returns do have fat tails, the multivariate t-distribution is particularly

relevant in finance.

An often asked question is why we single out the multivariate t-distribution from the class of
elliptical distributions, of which the multivariate ¢-distribution is only a special case and there are

countless others. The major reason is that the multivariate ¢-distribution appears to be the simplest

where the two likelihood ratio tests give conflicting conclusions on the validity of an asset pricing model.
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distribution that nests the normal and is almost as tractable as the normal. Unless it is rejected by
the data and a better alternative is found, the multivariate ¢-distribution should serve as a more
reasonable model than the normal. Although it seems possible to extend the EM algorithm to some
other elliptical distributions, the value of such extension is unknown, and is yet to be established

by future research.

While the i.i.d. assumption is popular in testing the unconditional version of asset pricing
models, it usually rules out the use of conditional information. Ferson (2003) provides an excellent
review of testing conditional asset pricing models based on the generalized method of moments
(GMM) of Hansen (1982), while Cremers (2002), Pastor and Stambaugh (2002) and Avramov
(2004), among others, model the dynamics of conditional variables based on multivariate normality
assumption. The trade-off between the two approaches is precision and generality. Clearly, the
multivariate t-distribution advocated here can also be used in a conditional set-up to offer some
more generality than the normal, and at the same time, to provide improvements in estimation

accuracy of parameters.

Finally, it is worth noting that the more the asset return deviates from normality, the greater
the difference it tends to make in estimating the asset’s expected return and alpha by using the
maximum likelihood method under ¢. This seems to have implications in measuring the abnormal
returns of corporate events, of which long-term performance of IPOs is a leading example. As
part of future research, it is of interest to examine how much of the abnormal performance may
simply be due to estimation errors in estimating the benchmark from an asset pricing model.!”
In fact, for any hypotheses or studies that rely on the first moments of the asset returns, the
methodology of the current paper may be applied to study the robustness of the results to departure
from the normality assumption. Another important issue is why asset returns have fat tails. An
understanding of the underlying economic reasons associated with a rational decision model is of

fundamental importance, serving as yet another direction for future research.

6. Conclusion

In this paper, we attempt to provide convincing arguments for the wide use of multivariate

t-distributions in finance. In contrast with the multivariate normal distribution which is firmly re-

Ritter (1991) raises some of the interesting issues and Lyon, Barber, and Tsai (1999) and references therein
provide some of the latest methodologies.
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jected by the data, suitable multivariate ¢-distributions pass standard skewness and kurtosis tests.
In addition, parameter estimation and tests under multivariate ¢-distribution can now be imple-
mented almost as easily as under the multivariate normality case. So, it appears that multivariate
t-distributions are promising in modeling financial data and answering interesting economic ques-
tions. Of course, we are not claiming that multivariate ¢-distributions are the best models. In fact,
they should by construction be less realistic than other parameters rich models such as the well-
known GARCH family. But the monthly data that are typically used for asset pricing tests and
corporate studies have little GARCH effects. A key issue is that, for large dimensional problems,

the multivariate ¢t-distribution is tractable while multivariate GARCH models and the like are not.

Applying multivariate ¢-distributions to Fama and French’s (1993) 25 portfolio returns and their
3 factors from July 1963 to December 2015, we find that there are drastic differences in estimating
the expected asset returns. There are also large reversals in ranking mutual fund performance based
on Jensen’s alphas under the multivariate normal versus under the multivariate ¢t. In addition,
the results on multivariate tests of asset pricing models can also be sensitive to the multivariate

normality assumption too.

In both statistics and econometrics, multivariate t-distribution is widely used for robust analysis
of data with fat tails. As asset returns do have large fat tails, the multivariate ¢-distribution should
play a similar role in finance. Hence, our proposed approach seems useful in a number of areas to ask
how sensitive the results are to the usual normality assumption. Leading examples in this regard
are the estimation of the cost of capital, performance evaluation, event studies, risk management,

and any hypotheses that rely heavily on the first moments of the asset returns.
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Appendix A

In this appendix, the intuition and proofs of the EM algorithms are provided for easy understanding
and completeness of the paper, though they follow directly from Dempster, Laird and Rubin (1977)
and Liu and Rubin (1995). However, explicit formulas for the asymptotic variance-covariance
matrix of V and that of the alphas and betas under the multivariate t-distribution are, to our

knowledge, not available in the statistics literature, and hence their derivations are provided here.

A.1. Proof of the first algorithm, (11)—(13):

As noted earlier, the key difficulty associated with maximizing the log-likelihood function under
multivariate ¢, equation (10), is that the terms do not combine to yield tractable solutions. However,
it is well-known that a multivariate ¢-distribution is an infinite mixture of the normals. That is,

there exists u; ~ x2/v such that, conditional on wu;, z; is normal:
xp ~ N(p, ¥ /uy). (A1)

Suppose we had observations on all the u;’s, then the conditional log-likelihood function:

n [« T 1 &
L(xg|ug) = 5 E log(uy) — T'log(27) | — 5 log(|¥|) — 5 E we(zp — p)' Oz — ), (A.2)
t=1 t=1

which can be obviously maximized with

T
i = 72@1 e (A.3)
D i1 Ut
I

However, the u;’s are in fact unobserved. The idea of Dempster, Laird and Rubin (1977) and Liu
and Rubin (1995) is that, we can estimate them by using their expected values conditional on the
parameters and the data. This is the E-step of the algorithm, and the expectation is easily obtained

as
vV+n
vt (2 — p) O (g — p)

Although we do not know the true parameters, the above provides an estimate of u; with any initial

Elug|wy; p, V] = (A.5)

estimates of the parameters. Then we can maximize the conditional log-likelihood function easily.
This is the M-step. Intuitively, the maximization should update our knowledge on the parameter

estimates which can be used in turn to update a new estimate for w;. Intuitively, continuing
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iterations may converge to the solution that maximizes the unconditional log-likelihood function,
equation (10). Fortunately, for our problems here and many other models, the EM algorithm indeed

converges and it even converges monotonically.

A.2. Proof of the asymptotic variance-covariance matrix for V, (17):

First, the asymptotic covariance between the sample estimates Vij and Vkl is known,

v—2

NN 2
ACOV[‘/@',VM] = (1/—4) Vz‘ij»l + <l/ — 4> (‘/zk:‘/]l + Vilek’)a (AG)

which follows from Muirhead (1982, p.42 and p.49). So the key is to obtain Acov[f/ij, Vil

Define D,, as an n?xn(n+1)/2 duplication matrix such that D, vech(V) = vec(V), where vec(V)
is an n? x 1 column vector by stacking up the columns of V, and vech(V) is an n(n + 1)/2 x 1
column vector by stacking up the columns of V| but with its supradiagonal elements deleted. Let
D = (D!, D,)"'D!, we have D;jvec(V) = vech(V). Lange, Little, and Taylor (1989) provide
the formula for the individual elements of the information matrix of 1) = vech(¥). With some

simplification, we can write the information matrix of ¢ as

Jpp = Wwrnt D (v + n)D, (T @ v HD, — ngec(\llfl)vec(\llfl)'Dn] . (A7)

Based on the following identities
[D,(¥ '@ W )D,"! = D (¥ @ ¥)D,l, (A8
D' Dl vec(¥1) = D, D;fvec(¥1) = Dyvech(T71) = vec(¥71), (A9
vec(U 1) vec(¥) = tr(T10) =n, (A.10

(T @ U vec(¥) = vec(T WU ) = vec(T 1), (A.11

we can analytically invert Jy, as

2 2 h(W h(W)
gt = A A D [ g gy prr 4 Yoch(W)vech ()] (A.12)
W/’ v + n v
This implies that the asymptotic variance of vech(V) is
~ 2 2 h h(V)
Avar[vech(V)] = 2v+n+2) [D;[(V® V)DH 4 Ve (V')vech(V) } ‘ (A.13)
v+n v
In particular, we have
-~ 2(v+n+2) v+mn+2
Acov[Vii Vil = [ 22222 v+ (222 (Wi Vi + ViV, A.14
cov[Vij, Vil (V(V+n) ) gkl+< S n )(kﬂ"‘ 1Vik) (A.14)
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A combination of (A.6) and (A.14) yields (17). This complete the proof.

A.3. Proof of the second algorithm, (40)—(46):

Similar to the first case, suppose we observe u; where u; ~ xg /v. Then conditional on u;, we

have

xp ~ N(p, U/ug). (A.15)
Conditional on f; and u; and under the assumption that o = Oy, we have
el fe,ue ~ N(Bfr, Ve/ur). (A.16)

Therefore, conditional on u;, the log-likelihood function of (7}, f/) is

L(re, frlue)
= L(r¢|fe,ur) + L(fe|ur)
N [& T e , )
=5 > log(us) — Tlog(2m) | — 5 log|¥e 5 > (re = B1) (We/ur) " (re — B12)
= =1
kt a T 1o
t5 > log(ur) — Tlog(%)] — 5 log ¥ -5 > lulfe— p2) U3 (fe — p2)] . (A7)
t=1 t=1

Note that the first part of the likelihood function has parameters 5 and ¥, and the second part has

parameters po and Woo. So we can maximize them separately. For the second part, it is clear that

S Zthl ut fi A18

2 Z?zl s ’ ( . )
- 1 &

Wy = fzut(ft — f2)(fe — fiz)". (A.19)
t=1

Therefore, we can focus our attention to the first part of the conditional likelihood function. Denote

Y = [r1\/u1, ro\/uz, ..., rry/ur] and X = [fivul, fo/uz, ..., fry/ur]’, we can write the first
part as

T

T
C(ril for ) = g S log(ur) — Tlog(2m) | — glog |- %Z(Yt BRI (Vi — BXy), (A.20)
t=1 t=1

which has the standard form of the multivariate normality case and hence, conditional on wu;, the

maximum likelihood estimator of § and ¥, under the null are
'X) (X' X)L, (A.21)
Y - Xp)(Y - X3). (A.22)



This accomplishes the M-step. The E-step is clearly the same as the earlier case. This completes

the proof.

A.4. Proof of the asymptotic variance-covariance matrix for & and f3, (31):

In the derivation below, we use the commutation matrix'! in addition to he duplication matrix
defined earlier in Appendix A.2. Commutation matrix allows us to commute two matrices in a
Kronecker product, and is defined as the unique mn x mn matrix K,,, consisting of 0’s and 1’s
such that K,,,vec(A) = vec(A’) for any m x n matrix A. If m = n, K, is simply denoted as K.
Let A be m xn, B be p x q. We have Kp,,(A® B) = (B ® A)K,. From Lange, Little, and Taylor

(1989) and our earlier results, we know that ji and ¥ are asymptotically independent and

v+n+42
A il = —— | ¥ A2
- ( tnt ) , (A.23)
/
Avarvech(¥)] = 2+ +2) [Dj{(\l/ o )y 4 Yoch(W)vech(¥) (A.24)
v+n v
We first prove that
~ v4+n+2 _
Avar[vec(B)] = (V—H”L) Uy @ V. (A.25)
Since g = \1'12§/;21, we have
vec(f3) = (\112*21 ® In)vec(V12) = (I ® \I’lg)VGC(\I’521). (A.26)
It follows that
Ovec(B) _1
— = I A2
3vec(\1112)’ 22 ® 1IN, ( 7)
dvec(B) dvec(¥5,))
8V6Ch(‘1’22)/ N (Ik © Wu)@vech(\llgg)’
= —(I; ® U19) (W) @ 5y Dy
= (Vs ® —f)Dy. (A.28)
Also, note that
VeC(\Iflg) = VeC([IN, ONXk]\II[OkXNa Ik],)
= ([kaN7 Ik] &® [IN, ONXk])DnveCh(\I/), (A.29)
vech(Was) = D,jvec([kaN, L)Y [0rpxn, Ii])
= D,—:([kaN, Ik] ® [OkXN7 Ik])DnveCh(\I/). (A.30)

'1See Harville (1997, Chapter 16) for a review of the properties of the commutation and the duplication matrices.
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Using the delta method, we have

Avar[vec(p)]
Okxn, Ix] @ [In, O -
— Avar [\11521 ® IN7 (q,521 ® *B)Dk] +[ kxN k] [ N NX]C] Dnvech(\Il)
Dy ([0kxn, Ik] @ [Okxns Ik])
= Avar [([kaN, \112_21] & [IN, —ﬁ]) Dnvech(\il)]
/
_ 2(v+n+2) ([0 U3 @ I, ~8)) Dn [D;LL(\IJ % U)DF + vech(¥)vech (W) ] D
v+n v
% ([0pxn, U] ® [Ty, —B])’
v+n+2 _ 2vec(W)vec(W)’
= (2 (onv, 0] @ . ) | (R + B (0 ) 4 2O
vV+n 1%
% ([0ksn, U3l @ [Iv, =B, (A.31)
where the third equality follows from the identity
DD} (A® A)D,, = (A® A)D, (A.32)
for a k x n matrix A, and the fourth equality follows from the identity
2D, D} (¥ © U)D' D), = %(InQ KDY W) (L + Kn) = (Ls + K) (U@ W) (A.33)
because 2D, D;" = I,2 + K,,. Using (A.31) and the following identities
(0kxv: W31 [T, —B]) Kn(¥ @ V) ((Okcnv, U3y'] @ [In, —B])
= Kk ([In, =B8] @ [Oens ¥33]) (U @ W) ([0, W3] @ [T, —B))
= Kni ([We, Onsr] @ [8', Ik]) ([Okxns Pay] ® [In, —ﬁ])/
= ONkx Nk (A.34)
([Ok’XN7 ‘;[12_21] ® [IN7 _6]) VGC(\I/) = vece ([IN7 _ﬁ]\p[OkXN> \112_21],) = ONk’v (A35)
we have
= v+n+2 _ _
Avar[vec(fB)] = (m) (Okxny Y5l @ [In, —B]) (¥ @ W) ([Opxn, Y5l © [Ty, —5])
_(v+n+2 1
= (V - ) (U5, @ ©,). (A.36)
As o = py — Bua, we have
fole}
37// - [IN7 _6]7 (A'37)
LY (A.38)
ovec(B) Hz & N '
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Using the delta method and the fact that g and ﬁN are asymptotically independent, we have

Avar[a] = (”1”;52) (Ins B[y, —B] + (—h ® In) (V53 @ W) (—ps ® L)
= () 0wt (A.39)

Similarly, the asymptotic covariance between & and vec() is given by

Acov|a, vee(B)] = (—uh ® In)Avar|vec(3)]
— (s 1) () (g 0 w)

v+n
B <V—i—n+2

= () gy @ ) (A.40)

Note that the expressions so far are written in terms of W9y and W, but not in terms of the variance
of f; and €. For comparison with the asymptotic variance of & and B, we use the fact that

Y =vVU./(v—2)and Vo = vWy /(v — 2) and write the asymptotic variance of & and vec(3) as

(52) + b Vg e — 1ty Vay"
—Vig' 2 5%

AW[ Oa] vtn+?2

vec(d) %, (A.41)

v+n

which is the expression in (31). Although not provided here, it can be shown that the asymptotic
variance of & and 3 remains the same even when the degrees of freedom v is unknown because the

information matrix is block diagonal.

For the asymptotic variance of the OLS estimators & and Vec(B) under the multivariate t-

distribution, we have from Geczy (2001) that

g L+ (2) iV e — (423) V!
e O B e P e LS

This completes the proof.
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Table 1

Normality Test of the Fama-French Portfolios

The table reports the univariate and multivariate sample skewness and kurtosis measures of the Fama-French
25 size and book-to-market ranked portfolios and three factors based on monthly returns from July 1963
through December 2015. In addition, it also reports the p-values of the skewness and kurtosis tests if the data
is assumed to be drawn form a univariate or multivariate normal distribution, or a univariate or multivariate

t-distribution with degrees of freedom 8, 7, and 6, respectively.

S1B1
S1B2
S1B3
S1B4
S1B5
S2B1
S2B2
S2B3
S2B4
S2B5
S3B1

S3B2
S3B3
S3B4
S3B5
S4B1

S4B2
S4B3
S4B4
S4B5
S5B1

S5B2
S5B3
S5B4
S5B5
SMB

HML
MKT

p-value (%)

Student-t with df

p-value (%)

Student-t with df

Skew. Normal 8 7 6 Kurt. Normal 8 7 6
Univariate
—0.036 71.08 85.59 87.20 89.34 5.232 0.00 12.05 21.08 36.88
0.040 67.47 83.75 85.47 87.98 6.328 0.00 4.36 8.42 17.53
—0.225 2.04 27.34 33.34 41.55 5.370 0.00 10.39 1848 33.37
—0.147 12.85 46.28 51.64 58.65 6.016 0.00 5.64 10.62 21.40
—0.217 2.47 28.83 34.82 43.03 6.252 0.00 4.65 8.90 18.37
—0.344 0.06 11.43 16.25 23.91 4.510 0.00 29.61 43.97 63.43
—0.478 0.00  4.47 7.42 1299 5.438 0.00 9.66 17.38 31.72
—0.486 0.00 4.25 7.06 12.55 5.863 0.00 6.39 12.00 23.61
—0.444 0.00 5.60 8.92 14.98 5.863 0.00 6.39 11.99 23.60
—0.406 0.01 7.35 11.14 17.87 5.884 0.00 6.27 11.80 23.29
—0.389 0.01 8.22 1227 19.32 4.467 0.00 31.34 46.00 65.42
—0.533 0.00 3.18 5.42 10.29 5.731 0.00 7.23 13.45 25.73
—0.483 0.00 4.33 7.19  12.72 5.145 0.00 13.34 22.95 39.47
—0.333 0.09 1241 17.38 25.16 5.346 0.00 10.62 18.91 33.93
—0.380 0.01 8.82 13.02 20.18 5.954 0.00 5.94 11.14 22.24
—0.254 091 22.15 28.07 36.40 4.827 0.00 19.69 31.53 50.10
—0.576 0.00 2.46 4.38 8.60 5.820 0.00 6.64 12.44 24.30
—0.520 0.00 3.44 5.85 10.87 6.158 0.00 5.03 9.54 19.53
—0.252 0.94 2240 28.31 36.62 5.139 0.00 13.46 23.10 39.65
—0.367 0.02 9.67 14.01 21.36 5.348 0.00 10.61 18.89 33.88
—0.233 1.64 25.85 31.82 40.06 4.663 0.00 24.30 37.43 56.65
—0.383 0.01 8.62 12.74 19.89 4.820 0.00 19.86 31.76 50.35
—0.288 0.32 17.39 2291 31.12 5.085 0.00 14.34 24.29 41.26
—0.555 0.00 2.80 4.86 9.37 6.481 0.00 3.88 7.59 16.06
—0.217 2.52  29.03 35.01 43.23 4.317 0.00 38.34 53.62 72.22
0.513 0.00 3.58 6.08 11.19 8.780 0.00 1.08 2.35 5.68
0.033 73.00 86.60 88.10 90.05 5.219 0.00 12.23 21.34 37.27
—0.523 0.00 3.37 5.74 10.74 4.925 0.00 17.39 28.51 46.58
Multivariate
159.04 0.00 3.60 14.51 49.42 1246.81 0.00 4.18 26.88 80.04
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Table 2
Estimation of Mean and Standard Deviation under Multivariate Normality versus under Multivariate ¢

The table reports the maximum likelihood estimates of means and standard deviations (in percentage per
month) of Fama-French benchmark portfolios and factors based on monthly returns from July 1963 to
December 2015, assuming that the returns are generated from a multivariate normal or ¢-distribution with
degrees of freedom 8, 7, and 6, respectively.

Mean Standard Deviation

t-distribution t-distribution

Normal df=8 df=7 df=6 Normal df=8 df=7 df=6

S1B1  0.232  0.058 0.057 0.056 7.942 7432 7.582 7.812
S1B2  0.777  0.607 0.605 0.604 6.906 6.483 6.615 6.817
S1B3  0.763  0.600 0.598 0.596 5.990 5.817 5.936 6.117
S1B4  0.988  0.805 0.803 0.800 5.706  5.453 5.564 5.732

S1B5 1.079  0.953 0.950 0.948 6.014  5.806 5.923 6.102
S2B1  0.460 0.364 0.364 0.364 7177 6.997 7.141 7.360
S2B2  0.738  0.642 0.642 0.642 5.985 5923 6.045 6.232
S2B3  0.871  0.809 0.808 0.807 5.424  5.392 5.503 5.672
S2B4 0915 0.857 0.856 0.855 5.218  5.136 5.241 5.402

S2B5  0.981  0.862 0.859 0.857 6.043 5.879 5.999 6.182
S3B1  0.492 0.477 0.478 0.479 6.610 6.403 6.535 6.736

S3B2  0.780  0.735 0.735 0.735 5477 5431 5.542 5.712
S3B3 0.736  0.717 0.717 0.717 5.003  5.000 5.103 5.260
S3B4  0.861  0.807 0.806 0.805 4.895 4.895 4.996 5.150
S3B5 1.017  0.894 0.892 0.889 5.620  5.503 5.615 5.786
S4B1  0.589  0.526 0.525 0.524 5.913  5.677 5.794 5.971

S4B2  0.582  0.539 0.540 0.540 5.127  5.097 5.203 5.363
S4B3  0.679  0.655 0.654 0.654 4979 4914 5.016 5.171
S4B4  0.851  0.799 0.797 0.796 4.795  4.768 4.868 5.020
S4B5  0.801  0.779 0.779 0.778 5.667  5.537 5.651 5.824

ShHB1 0.467 0.493 0.492 0.492 4.633 4.625 4.722 4.868
S56B2  0.510  0.541 0.541 0.541 4.444 4433 4.526 4.666
SHB3  0.520  0.575 0.577 0.578 4.299  4.244 4.332 4.466
S6B4  0.481  0.559 0.560 0.561 4.644 4460 4.551 4.690
S5B5  0.658  0.628 0.627 0.625 5.332  5.240 5.348 5.513
SMB 0.221  0.103 0.102 0.101 3.094 2.834 2.892 2980
HML  0.348 0.325 0.324 0.323 2.809 2.564 2.616 2.695

MKT 0.499 0.531 0.532 0.532 4.440 4.383 4.474 4.612
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Table 3

Alpha and Beta Estimation under Multivariate Normality versus under Multivariate ¢

The table reports the maximum likelihood estimates of alphas (in percent) and betas in the Fama-French

three-factor model for 25 size and book-to-market ranked portfolios based on monthly returns from July 1963

through December 2015. Two sets of maximum likelihood estimates are reported. The first set assumes the

returns and factors are multivariate normally distributed, and the second set assumes the returns and factors

are multivariate ¢t-distributed with 7 degrees of freedom.

a (%) BMKT BumL BsmB
Portfolio Normal t7 Normal t7 Normal t7 Normal t7
S1B1 —0.521 —0.580 1.100 1.086 —0.282 —0.236 1.364 1.341
S1B2 —-0.017 —-0.075 0.975 1.001 0.050 0.074 1.311 1.217
S1B3 —0.045 —0.095 0.935 0.939 0.296 0.259 1.078 1.084
S1B4 0.160 0.096 0.879 0.885 0.439 0.406 1.065 1.027
S1B5 0.122 0.124 0.962 0.946 0.684 0.650 1.078 1.101
S2B1 —0.190 —0.187 1.132 1.117 —0.381 —0.454 0.985 1.028
S2B2 —0.007 —0.006 1.015 1.021 0.125 0.036 0.881 0.919
S2B3 0.087 0.118 0.964 0.962 0.389 0.291 0.762 0.829
S2B4 0.087 0.114 0.960 0.952 0.557 0.493 0.698 0.740
S2B5 —0.031 —0.046 1.078 1.080 0.801 0.747 0.884 0.877
S3B1 —-0.073 —0.032 1.104 1.099 —0.428 —0.461 0.738 0.738
S3B2 0.081 0.113 1.041 1.019 0.173 0.054 0.541 0.621
S3B3 —0.001 0.036 0.991 0.984 0.423 0.323 0.427 0.520
S3B4 0.078 0.069 0.974 0.974 0.595 0.519 0.409 0.498
S3B5 0.081 0.036 1.078 1.057 0.796 0.707 0.548 0.635
S4B1 0.108 0.053 1.078 1.072 —0.413 —0.415 0.394 0.364
S4B2 —0.061 —0.074 1.064 1.048 0.190 0.080 0.208 0.295
S4B3 —0.038 —0.034 1.050 1.035 0.439 0.338 0.178 0.274
S4B4 0.110 0.074 1.005 1.013 0.560 0.499 0.200 0.226
S4B5 —0.110 —-0.094 1.162 1.138 0.787 0.724 0.262 0.323
S5B1 0.169 0.144 0.965 0.965 —0.375 —0.429 —0.241 —0.250
S5B2 0.027 0.026 0.997 0.995 0.092 0.016 -0.210 -0.187
S5B3 —0.006 0.008 0.952 0.956 0.311 0.255 —0.256 —0.221
S5B4 —0.212 —-0.138 1.036 1.021 0.644 0.541 —0.222 —0.194
S5B5 —0.151 —-0.224 1.110 1.116 0.801 0.821 —0.107 —0.081
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Table 4

Estimated Alphas of Mutual Funds under Normality versus under ¢ (2011/1-2015/12)

Based on monthly data from January 2011 to December 2015, the first panel of the table reports the esti-
mated monthly Jensen’s alpha (in percentage) of five mutual funds estimated under 5 different distributional

assumptions: the multivariate normal, the multivariate ¢-distribution with unknown, 8, 7, and 6 degrees of

freedom. The panel also reports the percentage of funds that reverse from a negative alpha when estimated

under the normality assumption to a positive alpha when estimated under the t-distribution assumption

with unknown degrees of freedom, together with their average absolute difference in the two estimated al-

phas. The second panel provides the corresponding results for funds with estimated reversed from positive

to negative. The third panel reports the percentage of funds that have an annualized absolute difference
over 1% to 5%, respectively, in their estimated alphas under the normal and the ¢-distribution assumptions

with unknown degrees of freedom.

degrees of freedom of ¢-distribution

Fund Normal unknown 8 7 6
iPath ETN Global Carbon/A —0.451 0.067 0.047 0.100 0.166
Ultra Series Fund: Large Cap Value Fund/II —0.229 0.091 0.053 0.059 0.067
MML Managed Volatility Fund —0.128 0.167 0.042 0.059 0.078
MML Large Cap Value Fund —0.149 0.146 0.022 0.038 0.057
Franklin Focused Core Equity Fund/A —0.230 0.008 —0.051 —0.037 —0.021
Percentage of reversals 2.28
Average absolute difference in alpha 0.081
Direxion Daily Small Cap Bear 3X Shares 1.328  —-0.727 —-0.607 —0.621 —0.638
Direxion Financial Bear 3X Shares 0.833 —1.156 —1.067 —1.068 —1.082
Columbia Abs. Ret. Currency & Inc. Fund/W 0.246 —0.157 —0.156 —0.161 —0.165
Highland L/S Healthcare Fund/Z 0.241 —-0.040 —0.006 —0.029 —0.038
MassMutual Select Fund. Growth Fund/A 0.064 —0.005 —0.006 —0.011 —0.018
Percentage of reversals 0.62
Average absolute difference in alpha 0.151
Absolute difference in annual alphas

1% 2% 3% 4% 5%

Percentage of Funds 11.62 4.08 1.86 1.18 0.70
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Table 5

Estimated Alphas of Mutual Funds under Normality versus under ¢ (2006/1-2015/12)

Based on monthly data from January 2006 to December 2015, the the first panel of the table reports
the estimated monthly Jensen’s alpha (in percentage) of five mutual funds estimated under 5 different

distributional assumptions: the multivariate normal, the multivariate ¢-distribution with unknown, 8, 7, and

6 degrees of freedom. The panel also reports the percentage of funds that reverse from a negative alpha

when estimated under the normality assumption to a positive alpha when estimated under the ¢-distribution

assumption with unknown degrees of freedom, together with their average absolute difference in the two

estimated alphas. The second panel provides the corresponding results for funds with estimated reversed

from positive to negative. The third panel reports the percentage of funds that have an annualized absolute

difference over 1% to 5%, respectively, in their estimated alphas under the normal and the t-distribution

assumptions with unknown degrees of freedom.

degrees of freedom of ¢-distribution

Fund Normal unknown 8 7 6
Forward Real Estate L/S Fund/A —0.372 0.106 0.013 0.030 0.049
Davis Real Estate Fund/A —0.247 0.101 0.011 0.029 0.050
SSgA Clarion Real Estate Fund/N —0.056 0.279 0.207 0.226 0.247
American Century Capital R.E. Fund/I —0.099 0.215 0.120 0.137 0.158
PowerShares S&P 500 High Quality Portfolio —0.107 0.201 0.082 0.098 0.117
Percentage of reversals 4.88
Average absolute difference in alpha 0.108
Reynolds Blue Chip Growth Fund 0.415 —0.123 0.002 —0.019 —0.042
Fidelity Select Portfolios: Computers Portfolio 0.031 -0.227r —-0.151 —-0.167 —0.185
Burnham Financial Industries Fund/C 0.191  —0.042 0.013 —-0.003 —0.024
Centaur Total Return Fund 0.173  —0.038 0.024 0.011 —0.004
Brown Capital Mgmt. Mid Company Fund/I 0.064 —-0.126 —0.106 —0.117 —0.130
Percentage of reversals 4.63
Average absolute difference in alpha 0.076
Absolute difference in annual alphas

1% 2% 3% 4% 5%

Percentage of Funds 18.10 6.25 2.29 0.76 0.41
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Table 6
Multivariate Tests of the CAPM

The table reports both the Gibbons, Ross, and Shanken (1989) test and the likelihood ratio test under the
multivariate t-distribution for the CAPM restrictions

HQZ OZZON

in regressions of the excess returns of Fama-French 25 size and book-to-market ranked portfolios on the
excess return on the market portfolio:

rio=0o; + BMKT, + ¢4, t=1,....T

where the data are monthly returns from July 1963 through December 2015. The tests are carried out for
the entire sample period as well as for two subperiods.

Model GRS p-value (%) LRT p-value (%)

July 1963 — December 2015

Normal 4.620 0.00 107.69 0.00
t (df=8) 121.95  0.00
t (df=7) 122.37 0.00
t (df=6) 122.82 0.00
t (unknown) 122.15 0.00

July 1963 — September 1989

Normal 2.097 0.21 50.08 0.21
t (df=8) 64.18 0.00
t (df=7) 64.52 0.00
t (df=6) 64.90 0.00
t (unknown) 62.75 0.00

October 1989 — December 2015

Normal 4.306 0.00 95.15 0.00
t (df=8) 90.55 0.00
t (df=7) 90.70 0.00
t (df=6) 90.88 0.00
t (unknown) 90.87 0.00
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Table 7
Multivariate Tests of the Fama-French 3-Factor Model

The table reports both the Gibbons, Ross, and Shanken (1989) test and the likelihood ratio test under the
multivariate t-distribution for the restrictions

HQZ OZZON

in regressions of the excess returns of Fama-French 25 size and book-to-market ranked portfolios on the
Fama-French 3-factor model:

rit = o + B1iMKT, + B0 SMBy + B3 ; HML; €, t=1,...,T,

where the data are monthly returns from July 1963 through December 2015. The tests are carried out for
the entire sample period as well as for two subperiods.

Model GRS p-value (%) LRT p-value (%)

July 1963 — December 2015

Normal 3.809 0.00 90.09 0.00
t (df=8) 99.93 0.00
t (df=T) 100.20 0.00
t (df=6) 100.48 0.00
¢ (unknown) 100.05 0.00

July 1963 — September 1989

Normal 1.281 17.13 31.57 17.07
t (df=8) 43.81 1.14
¢ (df=7) 44.06 1.07
t (df=6) 44.31 1.00
t (unknown) 42.58 1.56

October 1989 — December 2015

Normal 4.292 0.00 94.82 0.00
t (df=8) 89.30 0.00
t (df=7) 89.43 0.00
t (df=6) 89.59 0.00
t (unknown) 89.60 0.00
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Figure 1
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Plots of returns vs. distance measure from the center for S1IB1 and MKT

The figure presents the plots of the monthly excess returns (r;) of S1B1 and MKT vs. a measure of its distance from
the center (d¢) of the mutlivariate ¢-distribution over the period of July 1963 to December 2015. S1B1 is the portfolio
that has the smallest size and book-to-market out of the 25 Fama and French (1993) portfolios, and MKT is the
value-weighted combined NYSE-AMEX-NASDAQ market portfolio.
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