A More Detailed and Complete Appendix for

“Macroeconomic Volatilities and Long-run Risks of Asset Prices”

This is an on-line appendix with more details and analysis for the readers of the paper.

B.1 Derivation for the A;’s, risk-free rate and market price of risk

First, we re-write the normalized aggregator f defined in Equation (5) as

f€. =Ly,
P
where
G=(— )i (B1)
(L=7)J)=
Then, taking partial derivatives of f(C,J) with respect to J and C' , we have
fr=(0-1)pG—-po (B2)
and
G
fc=55(1—7)<]‘ (B3)

where we use the notation 0 = 117. Theoretically, the aggregator f(C,J) should be an

increasing function of the value function J (see, e.g., Skiadas, 2009, Chapter 6.3). Otherwise,
the monotonicity axiom of preferences will be violated. This places joint restrictions on ~
and v such that § > 1 or § < 0. This is because f; > 0 implies that

0
Ifo>1: —
> G>8—1

0
Ifo<1: —_—
< G<6—1

If 6 > 1, the first inequality is possible to have solutions. However, if 0 < 6 < 1, the second
inequality is impossible as G > 0 always. Hence, the necessary restriction on v and ¢ is
either § > 1 or # < 0. If § = 1, as shown by Duffie and Epstein (1992), we obtain the
standard additive expected utility of constant relative risk aversion (CRRA). So 6 > 1 can
be extended to 6 > 1.



Conjecturing a solution for J of the following form,

W}
J(Wi, Xy, Vig, Vo) = exp(Ag + A1 Xy + AoViy + AsVy) 1 t_ (B4)
and using the standard envelope condition fo = Jy,, we have
C = J'[(1 =) T B, (B5)
Substituting (B3) and (B4) into (B5), we obtain
C " 1-—
W B exp | (Ao + A1 Xy + AsViy + AsVy) = (B6)
and hence J can be re-written as
- o
I (O X, Vi, Var) = B0 explyp(Ao + Ao+ AViu + AVl 7. (BY)
Further substituting (B6) and (B4) into (B1), we get
Cy
G=—.
p W
Applying the log-linear approximation, we obtain
Cy
PG = 57 = 91— g1log g1 + g1 1og(BG). (B8)
This implies that
1=
f=0J(8G—=B)~0J|n 1_ ,y(Ao + A Xy + AV + AsVo) + £ (B9)
where 6 = 11:1 and
»
£=g1—gilogg + giylog B — . (B10)

Substituting (B9) into the HJB Equation (6),

1
f(C, J)+C (M+X)Jc+ [(5‘/1 ( 56)‘/2]02J00+JX'(—OéX)+§g0§[(SIV1+<1—(SI)VQ]JXX

_ 1 _ 1
+Jvy -k (Vi = Vi) + 50301Jv1v1 + Jvy - k2(Va = Vo) + 5051/2JV2VQ =0, (B11)

where {C;} is the optimal consumption process, and we have used the definition of

c 82
AT = Z b(z Z azzzj




with z = (C, X, V1,V42) and b(z) and o(z) the drift and diffusive terms for z defined in

Equation (2). Collecting the terms containing constant, Xy, Vi, and Vi, resp, we have

1 — _ _
Og1 1 _on + 05+ (1 —y)p+ siVivAs + koVopAs = 0
1—
X egll_fAﬁ(l—v)—awm:o
. 1—1 _1 _ 1 2 242 1 2.2 42 _
Vi 9911_7142 27(1 ’7)5(:—1‘2%%5:1:1/1 Aj 511/1A2+2‘71¢ A3=0
. 1_1/}14—1 _ i 12 B 242 _ A 122A2_
Va: 9911 e 2’7(1 7)(1 5c)+290x(1 0z )Y AT — Kot 3+202¢ 53=0.

Solving the above algebraic equations, we obtain

A = p 1/1[95 + (1= )+ k1 Vi Ay + kaVarh Ag),
1
l—~

Al = ———,

' (g1 + )y 1o
A . —bl—\/b%—élalcl ( )

2 2&1 ’
A — _b2 — \/b% — 4&202

5 261,2 ’

with
=103 bi=—(g+r)Y, o= -1 -0+ sp2e s,
_~AN\2
= Wﬂ?’ by = —(g1+ ka)th, c2 = —y(1 = 7)0(1 = 8) + §2(L — &) G

We then derive the risk-free rate and market prices of risks. Recall that the pricing kernel

is given by Equation (A6). Based on the definition for f, we have

1_
fr = & g (AKXt AV + AyVa) ik

1— _
fo = B exp |(B+ AiX, + AsVie + AgVa) Y| o,

1—v
where
1=y
Si=0-1)—-B— 917 - Ay. (B13)

Applying Ito’s Lemma to 7, in Equation (A6), we have

d

% = —(rydt + \dZy, + NodZa + Nsdwyy + Ayduwsy), (B14)

t

where the risk-free rate 7y and the market prices of risks, \;,7 = 1,2, 3, 4, are given below.
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First, the risk-free rate is

ry =10+ 11Xt + r2Vi + 13V, (B15)
where
L=y

(§1+(/€1A2V1+/<&2A3V2) 5 — V),

1
rn=—-,
Y (B16)

l—yyp 1 (1—79 1
o=t a2 (AT (s, st~ Lo+ v,
v 11—’ 1
(m+ﬂﬁ%1 A [Alpi(1 = d2) + A3oy] — Sy(v + (1 = do).

Second, the market prices of risks are

Al = ”Y\/Vltfs + Vzt(l - 50)7
1 —y

Ay = — 11— Al@x\/vlt(s + Vai(1 = 6z),
1— (B17)
A3 = — 1 _nyA%Tl\/ Ve,
1—
Ay =— 1 _va:aUﬂ/ Vay.
Q.E.D.
B.2 Derivation for the A;,,’s
Let
Dy
P = exp{(AOm + Alth + AQm‘/it + A3m‘/2t)} (B18>
t
A key step in the derivation is to use the following pricing relation given in
dPt Dt d'ﬂ't dPt
Ei|—— )+ —=dt=ridt—FE, | ———]| . B1
t(a) R t[mPt ()

With similar loglinear approximation as Equation (B8), we can approximate the ratio as

Dy D,
F ~ Jom + 9im IOg P = Jom + glm((AOm + Alth + AQmVit + ASm‘/Zt))7 (B20)
t t

where

Gom = Gim — G1im 10g Gim.



Applying Ito’s lemma to (B18), we have

dP, dD 1 1
?:: D: (AimdX; + ApmdVi + AgmdVar) + 5 A (dXt)2+§A§m(dVM)2+§A§m(dV%)2.
Hence,

dp,

( )/dt = pg+ oXi + aAy, Xy — /ﬁAQm(Vl — Vi) — /izAzm(‘_@ — Vi)

1 1

The risk premium term in Equation (B19) can thus be written as

—Et |:d7rt dPt
T B

:| /dt = Udc/\l \/‘/itéc + ‘/Qt(l - 50) - (Almspa: - de>/\2 \/Vvlt(scc + ‘/Qt(l - 5:1:)
—(A2m01 - Udv))\s vV Vi — (A3m02 - Udv2)/\4\/ Vat, (322)

where A1, Ay, A3 and A4 are market prices of risks defined in Equation (B17).

Now, substituting (B20), (B21), (B22), and risk-free rate (B15) into Equation (B19), and

collecting terms containing X;, we obtain

Ay = — . B23
' glm+a ( )

Collecting terms containing Vi, and Vs, resp, we obtain an equation for A,,,,
a2mA§m + meAQm + Com = 0
with

1
Ao = 503, bom = Gim + K1 —

5 1m 1— ~ AlAlm)cpitsx + Ta.

Solving it, we have

—bzm + \/b%m — 4a2m02m
Ay = 5 )
Q2m

(B24)

We choose the root that goes to zero when oy goes to zero. This is because when oy, or as,,

goes to zero, the price sensitivity to Vi should be zero.

Similarly, we obtain an equation for As,,,

a3mA;2>,m + b3mA3m +c3m =0



with

1
A3m = 5057 bam = Gim + K2 —

1=y
L—x

1 1—
Agag, C3m — (§A%m — 1 _’}::/pAlAlm)gDi(]_ — 536) —|— Trs.

The solution is

A . —bgm + \/b?%m — 4a3m03m
3m — 2a3m

, (B25)
where we choose the root in a similar fashion as for A, above.

Finally, collecting the constant terms in Equation (B19), we obtain
Hd — K1 Aom Vi — Ko Asn Va + Gom + gimAom + 10 = 0,

and re-arrange terms to get

1 _ _
Aom = _g_ [Md — k1 Ao V1 — K2 A3 Vo + g1m — 91m 108 g1 + 7“0} .
Im

So far, we obtain all the A;,, coefficients.

To obtain the market return volatility, we apply Ito’s Lemma to Equation (B18) and

obtain

dp

B [ta — (Agmki Vi + AgmbaVa) + (¢ + adin) Xy
t

1 1
+(§A%m9092551 + §A2m0% + Aokl — Aim0dpPs0s — Aom0104y) Vi

+(%A%m<ﬂ§(1 — 02) + %ASmUS + Azmbia — Atm0aepe(l — 02) — Azpm0a0ave) Var] di
0/ Virdg + Var(1 = 64)dBy; + 0aer/Virde + Var(1 — 6.)d 2y,
+(0dr = Ampe)V ViiGy + Var(1 = 6,)dZ
+(oa — A2m01)\/V_1tdw1t + (g2 — A3m02)\/V—2tdw2t
= [e3+ caXy + csVay + cValldt + /e Vig + caVardZ,

where ¢; (i =1 to 6) are constants, dZ; is a new Brownian motion defined accordingly, and

hence the variance of the price process is
Vi =caVie + caVay,

with
C1 = (p?l(sd + 0-3050 + (de - A1m901>2§x + (Udv - A2m01)27

(B26)
Cy = @3(1 — 5d) + U?lc(l — (50) + (O-da: — Alm(px)Q(l — 535) + (Udv2 — A3m0-2)27
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and the parameters for the drift term are
cs = ¢+ adiy,
C5 = (%A%mépiéx + %A2mg% + Aoyt — AtmOarpede — Aan0104), (B27)
ce = (%A%mgoi(l —0,) + %Agmag + Aspke — AimOaee(1 — 02) — A3n0204p2)-

Q.E.D.
B.3 Solutions to ¢g; and g,

Note that the derived solutions depend on the approximation constant g, which can be
solved endogenously. Given the model parameters, we can compute the unconditional mean

of consumption-wealth ratio as a function of the parameters,

C 1 Vid, + Va(1 =6,
g = E (W) = 3% exp {Aga} exp{ZA?awi( - ;( ))}

2%,V A 2kaV A
- exp {— K12V1 log(1 — 2 )} - exp {— /@2‘/2 log(1 — Ja )} . (B28)

o3 2k1/0? o3 2Ky /03

Note that the A;,’s on the right hand side are also functions of g;. Substituting A;, as
function of g; into Equation (B28), we obtain a nonlinear function in terms of ¢g; only, and
hence g; can be solved in terms of the fundamental parameters of the model, and can be

computed numerically with many available algorithms.

Similarly, we can solve gy, endogenously based on dividend-price ratio given as

D 1 Vide + Va(l — 6,
9im = E(F) :exp{AOm}eXp{ZA%mgpazc< - ;< >>}

- exp {—2,{12‘/1 log(1 — Asm )} - exp {—21{22‘/2 log(1 — Asm )} . (B29)

o7 2K1 /03 o3 269 /02

This can be solved numerically as above. Q.E.D.
B.4 Predictability of variables

The regressors of the three regressions given in Equation (14)-(16) all have the generic

functional form of

dY; = [ag + a1 Xy + aoViy + agVay|dt + /b1 Vi + b VordZy,
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given in Equation (17) where dY; corresponds to excess return d In Pt—l—% —7¢dt, consumption
growth dIn C; and dividend growth d1n Dy, respectively. For stock market excess return, we

have

a1 = ¢4+ 11+ gimAim,

1

g = C5 — 31 + 1o+ meA2m7 (B30)
1

az = Cg — 52 + 73 + g3mAzm,

where ¢y, 2, ¢4, ¢; and ¢g are defined in Equations (B26) and (B27).

For consumption growth, we have

Oc 1—9.
ay = ]., a9 = —57 az = — 9 . (B31)
For dividend growth, we have
903561 + 0-3056 + O-gv + 0-521:1:543 @3(1 B 5(1) + Ugc(l B 50) + U§v2 + O-gx(]' — 535)
ap =, a2 = — a3 = — :
2 2
(B32)

We want to show Equations (A13). Given Equations (B30) and (B18), and denoting
Cov(z,y) =< x,y >, and pd; = p; — d;, we have

t+7
< / dysapt - dt >
t

t+7
= / ds < ap+ a1 X + axVis + asVas, pdy >
t

t+T1
= / ds[a; < x4, pdy > +as < Vig, pdy > +as < Vag, pd; >]
t

where
0z = ¢5[Vide + Va(1 = ;)]
Integrating the above equation, we obtain Equation (A13), where

o2 0%‘/1

Cov(Ary,p—d) = - alAlmQTjgu —e )+ a2A2m2_ﬁ%(1 — e ™7,
2
a3 Ay S (1 - 6_’“”)] (B33)
2K5
; 2V, o2V
—d :AZQ A2‘711 q2 9202 B34
Var<p ) 1m 206 2m 2/{1 + 3m 2/{/2 5 ( )
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with
02 = 210, + Va(1 — 6,)]

which are the same given in the text. We have used the unconditional covariance:

0_2
<X, X,> = Jzgalt—sl
2a
oF
oV
< ‘/;ty‘/;s > = 4 16 Hllt s|
2/11‘

fori=1,2.

Similar computation applies to obtain Equation (A17). Q.E.D.

B.5 Predictability of volatilities

First, we prove Equation (A16). To do so, we apply the following approximation:

1 [7 1 /"
—/ exp(zs)ds ~ exp(—/ zsds) (B35)
0 T Jo

T

for any process x,. This is equivalent to approximating the arithmetic mean by the geometric
mean. The approximation is good when the variation of z; is small, which is true for our
variance processes because the magnitude is generally in the order of 1073 ~ 107*, and the

variation of log V; is within 1. Applying the approximation to log V;, we have

/7 1 (7 1 1 [7
—/ V Vidt = —/ exp(= InV;)dt ~ exp(—/ In V,dt). (B36)
T Jo T Jo 2 21 J,

—/ In Vidt
T Vi —
— 1 In(1
by [/ nV+/O n( +

Hence,

Q

1 T
111—/ v/ Vidt
T Jo

V)dt}

Q
|
=3
<
+
|

which is Equation (A16).

Because of the approximation above, we can express the volatilities as an integral of
b1 Vis + boVag over (t,t + 7). Plugging these terms into the definition of the covariance, we
then obtain Equation (A17).



Then we provide the derivation of the AR(1) coefficient. Consider a stochastic process

of the form

b1 Vie + baVay,

where b; and b, are constants. Due to independence between 1, and V5, the unconditional
auto-covariance can be evaluated as

-
205 V2

2
2/‘62

b2 U%‘_/l

exp(—koT
12,%1 p( 2)

exp(—k17) + b

and the unconditional variance can be evaluated as

b2 O-%‘71

1 2 :
2:‘%1 2:‘12

Hence, the AR(1) coefficient can be computed easily based on above. Q.E.D.

B.6 Derivation of VRP

We derive the time t expected future realized variance over time period 75 under the
risk-neutral probability. The market prices of risk for Vi; and Vo, are A3 and A4 of Equation

(B17), hence the risk premia associated with V3, and V5, are

)\301\/ Vie = =11V, and )\402\/ Vor = =10V, (B38)
where
1— 1—
V= 1 _/y;p AQO’%, and Vy = 1 _,y;pAg)O'% (B39)
Hence, the risk-neutral processes for Vj; and V5, are
K1 —
dVie = K2 (=5 Vi = Vi)dt + o1/ Vigdu,
1 (B40)

/<;/ _
AV, = fi?(ﬁ—gvz — Va)dt + oo/ VaydwS,

2

where the risk-neutral mean-reversion coefficients for V;; are defined as
KJQ = KR; — V; (B41)

for i = 1,2. In order for well-defined risk-neutral processes in Equation (B40), we need to

have £2’s to be positive such that
v < k1 and 1y < K. (B42)
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Now we compute the squared VIX, or more generally, variance swap rate V'S; with maturity
To, defined as the risk neutral expectation of the variance. Because the risk-neutral process

and the physical process of Equation are both Heston (1993) processes, we obtain Equation

2
VSt = ZCZ(A? + B,LQ‘/zt)v

=1

where the constants A? and BY (i = 1,2) are given by

Q_Hz"—/i
AP = =5

K;

5 BY = —— (B43)

Iii To

- ] 1= ertn
g

Q.E.D.
B.7 The GMM test

First, it will be useful to see why we can assume V; = V5. In our model, the combination,
V10 + Var (1 —46.), is the variance of the consumption growth. The relative importance of the
two volatility factors in driving consumption variance is characterized by 4., hence without
loss of generality, we can assume V; = V,. This is because, if we have V; # Vs, we can

redefine another latent variable V,, = bV5,, where b = %, such that

d‘/2/t = liz(Vi — ‘/;t)dt + 0;\/ V2’tdw2t (B44)
with o} = Vbo,. By adjusting 6, accordingly, the new process match exactly the same
variance of the consumption growth.

Denote h(f) as the vector of target moments implied by the model given parameter set
6. We choose 23 target moments as described in the text. Let hr be sample vector from

data with size T' corresponding to the target moments, and expressed as

he = ¢(g7) (B45)
with
1 T
gr =7 Z Ty (B46)

where x; is a vector representing market data, the details are given below. The GMM

estimator {67 : T > 1} is defined as

mm[h(@T) — hT]’W[h(QT) — hT] (B47)

Ot
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for some positive definite weighting matrix W. If the model is true and data is stationary,

then the GMM estimator must be consistent (Hansen 1982).

By optimizing the quadratic form of Equation (B47), and substituting Equation (B45)

into the first order condition, we obtain

Arlh(Or) — hr] = Arlo{g(8r)) — o(gr)] = 0. (B4
with
Ap = a’gé’f)w, (B49)
and
Dy = a};;:) (B50)
For a consistent estimator f7, asymptotically we have Taylor expansion
plsafo(y(01)) — olor)] = 2 x plaly(01) — g1 (B51)

Let A = plimAy and D = plimDr, following Zhou (1994), the covariance matrix for the

target moments is

Ap = %(1 — D(AD)™'A) {%} S {%} , (I — D(AD)™'AY

where S is the spectral matrix defined as
S = Z Exix,_;.
Jj=—00

Denote
J = (h(07) — hy)Ar(h(0p — hr))

which measures the sum of squared errors of target moments,
J ~ x*(# ofmoments — # of parameters),

In addition, if J, is J-statistics with the same covariance matrix for a restricted version of
the model, then
Jr — J ~ x*(# of restrictions)

where the number of restrictions is the number of parameters that is restricted in one-factor

model. Q.E.D.
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B.8 Moment conditions for GMM test

In this section, we present the moment conditions for GMM estimation. The 23-dimensional
vector hp(#) in the quadratic form h%.(0)Wr(0)hr(0) that we choose to minimize are the dif-
ferences between the model functions and their sample values. The first 15 moment functions
are

E(Ac) o(Ac) AC1(Ac)
E(Ad) o(Ad) AC1(Ad)
E(re) o(re) AC1(r,)
E(ry)  o(ry)  ACl(ry)
E(p—d) olp—d) ACl(p—d)
Denote r, as consumption growth Ac, dividend growth Ad, excess return r., risk free rate

s, and price-dividend ratio p — d, the above moments are given as

o(rs) = VE[(r)? - E(r2)*
o E[T:t,tJrlrx,t] - E[TI]Q
ACl(r,) = Eb2 — BirJ?

where E(r,) are easy to compute analytically given the processes in the paper.

The 16th and 17th moments are E[VRP], o(VRP), the expectation and standard devia-

tion of variance risk premium (VRP) defined in the text.

The 18th to 20th moments are the regression coefficients 5’s. All the 3 regression coeffi-

cients are of the form of

COV(Tz,tH; (pt - dt))
Var(p; — dy)
_ E[Tx,t—i-la (pe — di)] — E[Tx,t—&-l] - Elpy — dy]
- El(p — 4] — Elpe — AP (B52)

where 7, are consumption growth, dividend growth, excess return, resp.

8

The 20th to 23rd moments are the three regression ’s of volatility regressions for At =1
year. Specifically, they are

Cov(In Vol ¢4, (pt — dt))
Var(p; — dy)
E[ln Vol ¢4 - (Pt — dt)] - E[ln VOlt,t—l—T] : E[pt - dt]
El(pe — di)?] — Elpr — dy]?

Bvol

where Vol ¢, is given in Equation (A15) and stands for volatility of consumption, dividend,

and excess return, resp. With specification of all the moment conditions, and the analyt-
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ical formula of the moments implied by the model that is solved in the paper, the GMM

estimation and tests can be carried out as usual (see, e.g., Singleton, 2006).
We show the 26 elements of the moments in gr as follows. The first 15 moments are:
Elr.], E[TiL E[Tz,t+177“xt}
where 7, stands for consumption growth, dividend growth, excess return, risk free rate, and
price-dividend ratio.

Moments 16 and 17 are:
E[VRP,], E[VRP?]

where VRP is the variance risk premium.

Moments 18 to 20 are:
E[Tz,t+17 (pt - dt)]

where 7, stands for consumption growth, dividend growth, and excess return.

Moments 21 to 26 are:
Ellog Voly], E[(log Voly), (ps — d¢)]

where x stands for consumption, dividend, and excess return. The data can be obtained

through quarterly data regression
Tetyl = O+ Brog + €y

and annual expected volatility Vol are obtained from

4

Vol = ) lecid (B53)

k=1

Finally, the form of function hr = ¢(gr) that links the target functions hy and the
moments gr, as well as its first-order derivative matrix are elementary, and can be obtained

from authors upon request. Q.E.D.
B.9 Accuracy of the Log-linear Approximation

To show that the log-linear approximation (which is accurate when ¢ = 1) is accurate

enough for the parameter values of interest, we take a three step approach. First, we show
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the standard deviation of the log consumption-wealth ratio is small. Second, we show that
the second factor of the two-factor volatility model contributes less than 2% to it. Third,
we show that the exact solution of a one-factor with the same magnitude of the standard

deviation is very close to the log-linear approximation.

First, extending the approximation in discrete-time models by many, Chacko and Viceira
(2005) show that the approximation works for continuous models too as long as the standard
deviation of the log consumption-wealth ratio does not vary too much around its uncondi-
tional mean. Specifically, the approximation is a Taylor expansion of the consumption-wealth
ratio around its unconditional mean level, denoted as g1,

Cy

= e el il (g - w) — Ble - w),

g1 — g1 log g1 + g1 log(Cy/W). (B54)

Q

This implies that a small enough standard deviation of log(C;/W;) yields a good approxi-
mation. In Panel A of Table 1, we, like Chacko and Viceira (2005), show that the standard
deviation of this ratio is indeed small at less than 1.8% for a range of preference parameters,
and is much smaller for ¢ closer to 1 (this is not surprising as the approximation is accurate

when ¢ = 1). In particular, for our model parameterization, the standard deviation is 1.6%.

Second, the relative contribution of the second volatility factor to the total standard
deviation of the log consumption wealth ratio is small, as shown by the results in Panel B
of Table 1. This means that the approximation error for our two factor model is almost the

same as a one-factor model.

Finally, we have to show that the approximation error of a one-factor model is indeed
small for the parameter values of interest. To do so, we design a one-factor version of our
model with the one factor calibrated to the first volatility in our model and provide the
exact solution. (Ideally, we want to compare the exact solution of our two-factor model to

the linear approximation. But that is too complex to solve.)

The one-factor model is a non-trivial version of the two-factor one,

d
% = /.Ldt + \/ ‘/tdZt,
t

AV, = k(V =V,)+ o/ Vidw;.
We calibrate the parameters to match the first two moments of consumption growth. The
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value function in steady state can be written as

7
J(Vi, Cr) = €g(vt)1t_—,y- (B55)

It can be shown that the solution for G(V') follows an ODE as

_dG(V dG(V)\? PGV
%(5 — B9 + (1 —y)(u— %V) +/<(V—V)—gd§/ )%02\/ (—gdi/ >) +%(72V—dgv(? ) _,
(B56)

where € = 1{%;1 We solve this ODE numerically and report the results in Figure 1 with
both the function values and their differences (errors). It is seen that the solution is almost

the same as the linear approximation for the parameter range we consider.
B.10 Monotonicity of the Aggregator

Theoretically, it is very important to note that the log-linear approximation of the ag-
gregator f should be an increasing function of J. Otherwise, it will be in violation of the
monotonicity axiom of preferences (see, e.g., Skiadas, 2009, Chapter 6.3). But this is not
always the case for all possible parameter values, which is a drawback of certain approxima-
tions. However, it should and must be so in the domain of interest of the state variables.

Indeed, based on the partial derivative f; of (B2),

fr=1(0-1)3G - 30,

we know that the variation of f; is driven only by SG, which is the consumption wealth
ratio based on (B8). In order to check whether f; > 0 for the relevant state variables, we
need to verify whether f; is positive for the reasonable range of consumption wealth ratio,
GG, which has mean value equal to g;. Based on (BS8), the standard deviation of 5G can be

computed as

1 —
Ocw = \/A%a% + A302, + A3c2, - 91—||1 — Qﬁ;
where o0,,0,1,0, are unconditional standard deviations of state variables X, Vi, V5. As a
result, we only need to check the positivity of f; in the range of SG € (g1 — 20w, g1 + 20cw)
of interest. Figure 1 shows the numerical values f; in terms of the number of standard

deviation from the mean of SG. Within the range of our interest, f; is indeed positive as it
should.
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Table 1: Unconditional Standard Deviation of the Log Consumption-Wealth Ratio

This table shows the consumption-wealth ratio variability around its long term mean level
as well as the percentage contribution of the components to the total variation. It shows
that the standard deviation of log consumption wealth ratio is less than 2%, hence the
approximation of log-linearization is a good one. In addition, the new factor contribution to
this variability is small, with less than 1%, due to its short-run nature.

EIS ¢
15 145 14 135 1.3 1.2

v  Standard Deviation of log C-W Ratio (%)
10 1.610 1.504 1.378 1.237 1.103 0.777
9 1.684 1.572 1.443 1.304 1.152 0.807
8 1.761 1.639 1.514 1.355 1.209 0.848
5 1.650 1.544 1.423 1.355 1.148 0.833
v Contribution by the New Factor (%)

10 0.839 0.883 0.757 0.832 0.848 0.908
9 0.841 0.890 0.763 0.837 0.932 0.937
8§ 0.847 0.906 0.970 0.867 0.905 0.976
5 1.298 1.301 1.346 1.158 1.453 1.480

17



Figure 1: Log-linear Approximation vs Numerical Solution

The figure plots the log-linear approximated vs. exact numerical solution for G(V') of Equa-
tion (B56). The parameters are:

Y =15,7=10,8=0.01,u =0.02,k = 0.035,V = 0.0004, 0 = 0.0026,
which are designed to match the unconditional moments of consumption growth and its

volatility.
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Figure 2: Monotonicity of the Aggregator

The figure plots the partial derivative of aggregator f with respect to .J, f;, vs. the number
of standard deviation from the mean value of f;. The parameters are taken from Table 3 of
the paper.
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