
A More Detailed and Complete Appendix for

“Macroeconomic Volatilities and Long-run Risks of Asset Prices”

This is an on-line appendix with more details and analysis for the readers of the paper.

B.1 Derivation for the Ai’s, risk-free rate and market price of risk

First, we re-write the normalized aggregator f defined in Equation (5) as

f(C, J) =
β

1− 1
ψ

(1− γ)J [G− 1],

where

G ≡ (
C

((1− γ)J)
1

1−γ
)1−

1
ψ . (B1)

Then, taking partial derivatives of f(C, J) with respect to J and C , we have

fJ = (θ − 1)βG− βθ (B2)

and

fC = β
G

C
(1− γ)J. (B3)

where we use the notation θ = 1−γ
1− 1

ψ

. Theoretically, the aggregator f(C, J) should be an

increasing function of the value function J (see, e.g., Skiadas, 2009, Chapter 6.3). Otherwise,

the monotonicity axiom of preferences will be violated. This places joint restrictions on γ

and ψ such that θ ≥ 1 or θ < 0. This is because fJ > 0 implies that

If θ > 1 : G >
θ

θ − 1

If θ < 1 : G <
θ

θ − 1
.

If θ > 1, the first inequality is possible to have solutions. However, if 0 < θ < 1, the second

inequality is impossible as G > 0 always. Hence, the necessary restriction on γ and ψ is

either θ > 1 or θ < 0. If θ = 1, as shown by Duffie and Epstein (1992), we obtain the

standard additive expected utility of constant relative risk aversion (CRRA). So θ > 1 can

be extended to θ ≥ 1.
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Conjecturing a solution for J of the following form,

J(Wt, Xt, V1t, V2t) = exp(A0 + A1Xt + A2V1t + A3V2t)
W 1−γ
t

1− γ
, (B4)

and using the standard envelope condition fC = JW , we have

C = J−ψ
W [(1− γ)J ]

1−γψ
1−γ βψ. (B5)

Substituting (B3) and (B4) into (B5), we obtain

C

W
= βψ exp

[
(A0 + A1Xt + A2V1t + A3V2t)

1− ψ

1− γ

]
. (B6)

and hence J can be re-written as

J(Ct, Xt, V1t, V2t) = β−ψ(1−γ) exp[ψ(A0 + A1Xt + A2V1t + A3V2t)]
C1−γ
t

1− γ
. (B7)

Further substituting (B6) and (B4) into (B1), we get

βG =
Ct
Wt

.

Applying the log-linear approximation, we obtain

βG =
Ct
Wt

≈ g1 − g1 log g1 + g1 log(βG). (B8)

This implies that

f = θJ(βG− β) ≈ θJ

[
g1
1− ψ

1− γ
(A0 + A1Xt + A2V1t + A3V2t) + ξ

]
, (B9)

where θ = 1−γ
1− 1

ψ

and

ξ = g1 − g1 log g1 + g1ψ log β − β. (B10)

Substituting (B9) into the HJB Equation (6),

f(C, J) + C · (µ+X)JC +
1

2
[δcV1 + (1− δc)V2]C

2JCC + JX · (−αX) +
1

2
φ2
x[δxV1 + (1− δx)V2]JXX

+JV1 · κ1(V̄1 − V1) +
1

2
σ2
1v1JV1V1 + JV2 · κ2(V̄2 − V2) +

1

2
σ2
2V2JV2V2 = 0, (B11)

where {Ct} is the optimal consumption process, and we have used the definition of

AcJ ≡
∑
i

b(z)
∂J(z)

∂z
+
∑
i,j

(σσT )i,j(z)
∂2J

∂zizj
,
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with z = (C,X, V1, V2) and b(z) and σ(z) the drift and diffusive terms for z defined in

Equation (2). Collecting the terms containing constant, Xt, V1t and V2t, resp, we have

θg1
1− ψ

1− γ
A0 + θξ + (1− γ)µ+ κ1V̄1ψA2 + κ2V̄2ψA3 = 0

X : θg1
1− ψ

1− γ
A1 + (1− γ)− αψA1 = 0

V1 : θg1
1− ψ

1− γ
A2 −

1

2
γ(1− γ)δc +

1

2
φ2
xδxψ

2A2
1 − κ1ψA2 +

1

2
σ2
1ψ

2A2
2 = 0

V2 : θg1
1− ψ

1− γ
A3 −

1

2
γ(1− γ)(1− δc) +

1

2
φ2
x(1− δx)ψ

2A2
1 − κ2ψA3 +

1

2
σ2
2ψ

2A2
3 = 0.

Solving the above algebraic equations, we obtain

A0 =
1

g1ψ
[θξ + (1− γ)µ+ κ1V̄1ψA2 + κ2V̄2ψA3],

A1 =
1− γ

(g1 + α)ψ
,

A2 =
−b1 −

√
b21 − 4a1c1
2a1

,

A3 =
−b2 −

√
b22 − 4a2c2
2a2

,

(B12)

with

a1 =
1
2
σ2
1ψ

2, b1 = −(g1 + κ1)ψ, c1 = −1
2
γ(1− γ)δc +

1
2
φ2
xδx

(1−γ)2
(g1+α)2

,

a2 =
1
2
σ2
2ψ

2, b2 = −(g1 + κ2)ψ, c2 = −1
2
γ(1− γ)δc(1− δc) +

1
2
φ2
x(1− δx)

(1−γ)2
(g1+α)2

.

We then derive the risk-free rate and market prices of risks. Recall that the pricing kernel

is given by Equation (A6). Based on the definition for f , we have

fJ = ξ1 − g1(A1Xt + A2V1t + A3V2t)
1− γψ

1− γ
,

fC = βψγ exp

[
(B + A1Xt + A2V1t + A3V2t)

1− γψ

1− γ

]
C−γ
t ,

where

ξ1 = (θ − 1)ξ − β − g1
1− γψ

1− γ
A0. (B13)

Applying Ito’s Lemma to πt in Equation (A6), we have

dπt
πt

= −(rfdt+ λ1dZ1t + λ2dZ2t + λ3dw1t + λ4dw2t), (B14)

where the risk-free rate rf and the market prices of risks, λi, i = 1, 2, 3, 4, are given below.
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First, the risk-free rate is

rf = r0 + r1Xt + r2V1t + r3V2t, (B15)

where

r0 = −(ξ1 + (κ1A2V̄1 + κ2A3V̄2)
1− γψ

1− γ
− γµ),

r1 =
1

ψ
,

r2 = (g1 + κ1)A2
1− γψ

1− γ
− 1

2

(
1− γψ

1− γ

)2

(A2
1φ

2
xδx + A2

2σ
2
1)−

1

2
γ(γ + 1)δc,

r3 = (g1 + κ2)A3
1− γψ

1− γ
− 1

2

(
1− γψ

1− γ

)2

[A2
1φ

2
x(1− δx) + A2

3σ
2
2]−

1

2
γ(γ + 1)(1− δc).

(B16)

Second, the market prices of risks are

λ1 = γ
√
V1tδc + V2t(1− δc),

λ2 = −1− γψ

1− γ
A1φx

√
V1tδx + V2t(1− δx),

λ3 = −1− γψ

1− γ
A2σ1

√
V1t,

λ4 = −1− γψ

1− γ
A3σ2

√
V2t.

(B17)

Q.E.D.

B.2 Derivation for the Aim’s

Let
Dt

Pt
= exp{(A0m + A1mXt + A2mV1t + A3mV2t)}. (B18)

A key step in the derivation is to use the following pricing relation given in

Et

(
dPt
Pt

)
+
Dt

Pt
dt = rfdt− Et

[
dπt
πt

dPt
Pt

]
. (B19)

With similar loglinear approximation as Equation (B8), we can approximate the ratio as

Dt

Pt
≈ g0m + g1m log

Dt

Pt
= g0m + g1m((A0m + A1mXt + A2mV1t + A3mV2t)), (B20)

where

g0m = g1m − g1m log g1m.
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Applying Ito’s lemma to (B18), we have

dPt
Pt

=
dDt

Dt

− (A1mdXt +A2mdV1t +A3mdV2t) +
1

2
A2

1m(dXt)
2 +

1

2
A2

2m(dV1t)
2 +

1

2
A2

3m(dV2t)
2.

Hence,

Et(
dPt
Pt

)/dt = µd + ϕXt + αA1mXt − κ1A2m(V̄1 − V1t)− κ2A3m(V̄2 − V2t)

+
1

2
A2

1mφ
2
x[V1tδx + V2t(1− δx)] +

1

2
A2

2mσ
2
1V1t +

1

2
A2

3mσ
2
2V2t. (B21)

The risk premium term in Equation (B19) can thus be written as

−Et
[
dπt
πt

dPt
Pt

]
/dt = σdcλ1

√
V1tδc + V2t(1− δc)− (A1mφx − σdx)λ2

√
V1tδx + V2t(1− δx)

−(A2mσ1 − σdv)λ3
√
V1t − (A3mσ2 − σdv2)λ4

√
V2t, (B22)

where λ1, λ2, λ3 and λ4 are market prices of risks defined in Equation (B17).

Now, substituting (B20), (B21), (B22), and risk-free rate (B15) into Equation (B19), and

collecting terms containing Xt, we obtain

A1m = −
ϕ− 1

ψ

g1m + α
. (B23)

Collecting terms containing V1t and V2t, resp, we obtain an equation for A2m,

a2mA
2
2m + b2mA2m + c2m = 0

with

a2m =
1

2
σ2
1, b2m = g1m + κ1 −

1− γψ

1− γ
A2σ

2
1, c2m = (

1

2
A2

1m − 1− γψ

1− γ
A1A1m)φ

2
xδx + r2.

Solving it, we have

A2m =
−b2m ±

√
b22m − 4a2mc2m
2a2m

. (B24)

We choose the root that goes to zero when σ1 goes to zero. This is because when σ1, or a2m

goes to zero, the price sensitivity to V1 should be zero.

Similarly, we obtain an equation for A3m,

a3mA
2
3m + b3mA3m + c3m = 0
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with

a3m =
1

2
σ2
2, b2m = g1m + κ2 −

1− γψ

1− γ
A3σ

2
2, c3m = (

1

2
A2

1m − 1− γψ

1− γ
A1A1m)φ

2
x(1− δx) + r3.

The solution is

A3m =
−b3m ±

√
b23m − 4a3mc3m
2a3m

, (B25)

where we choose the root in a similar fashion as for A2m above.

Finally, collecting the constant terms in Equation (B19), we obtain

µd − κ1A2mV̄1 − κ2A3mV̄2 + g0m + g1mA0m + r0 = 0,

and re-arrange terms to get

A0m = − 1

g1m

[
µd − κ1A2mV̄1 − κ2A3mV̄2 + g1m − g1m log g1m + r0

]
.

So far, we obtain all the Aim coefficients.

To obtain the market return volatility, we apply Ito’s Lemma to Equation (B18) and

obtain

dPt
Pt

= [µd − (A2mκ1V̄1 + A3mκ2V̄2) + (ϕ+ αA1m)Xt

+(
1

2
A2

1mφ
2
xδx +

1

2
A2mσ

2
1 + A2mκ1 − A1mσdxφxδx − A2mσ1σdv)V1t

+(
1

2
A2

1mφ
2
x(1− δx) +

1

2
A3mσ

2
2 + A3mκ2 − A1mσdxφx(1− δx)− A3mσ2σdv2)V2t]dt

+φd
√
V1tδd + V2t(1− δd)dBt + σdc

√
V1tδc + V2t(1− δc)dZ1t

+(σdx − A1mφx)
√
V1tδx + V2t(1− δx)dZ2t

+(σdv − A2mσ1)
√
V1tdw1t + (σdv2 − A3mσ2)

√
V2tdw2t

= [c3 + c4Xt + c5V1t + c6V2t]dt+
√
c1V1t + c2V2tdZt,

where ci (i = 1 to 6) are constants, dZt is a new Brownian motion defined accordingly, and

hence the variance of the price process is

Vt = c1V1t + c2V2t,

with

c1 = φ2
dδd + σ2

dcδc + (σdx − A1mφx)
2δx + (σdv − A2mσ1)

2,

c2 = φ2
d(1− δd) + σ2

dc(1− δc) + (σdx − A1mφx)
2(1− δx) + (σdv2 − A3mσ2)

2,
(B26)
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and the parameters for the drift term are

c4 = ϕ+ αA1m,

c5 = (
1

2
A2

1mφ
2
xδx +

1

2
A2mσ

2
1 + A2mκ1 − A1mσdxφxδx − A2mσ1σdv),

c6 = (
1

2
A2

1mφ
2
x(1− δx) +

1

2
A3mσ

2
2 + A3mκ2 − A1mσdxφx(1− δx)− A3mσ2σdv2).

(B27)

Q.E.D.

B.3 Solutions to g1 and g1m

Note that the derived solutions depend on the approximation constant g1, which can be

solved endogenously. Given the model parameters, we can compute the unconditional mean

of consumption-wealth ratio as a function of the parameters,

g1 = E

(
C

W

)
= βψ exp {A0a} exp

{
1

4
A2

1aφ
2
x

(V̄1δx + V̄2(1− δx))

α

}
· exp

{
−2κ1V̄1

σ2
1

log(1− A2a

2κ1/σ2
1

)

}
· exp

{
−2κ2V̄2

σ2
2

log(1− A3a

2κ2/σ2
2

)

}
. (B28)

Note that the Aia’s on the right hand side are also functions of g1. Substituting Aia as

function of g1 into Equation (B28), we obtain a nonlinear function in terms of g1 only, and

hence g1 can be solved in terms of the fundamental parameters of the model, and can be

computed numerically with many available algorithms.

Similarly, we can solve g1m endogenously based on dividend-price ratio given as

g1m = E

(
D

P

)
= exp {A0m} exp

{
1

4
A2

1mφ
2
x

(V̄1δx + V̄2(1− δx))

α

}
· exp

{
−2κ1V̄1

σ2
1

log(1− A2m

2κ1/σ2
1

)

}
· exp

{
−2κ2V̄2

σ2
2

log(1− A3m

2κ2/σ2
2

)

}
. (B29)

This can be solved numerically as above. Q.E.D.

B.4 Predictability of variables

The regressors of the three regressions given in Equation (14)-(16) all have the generic

functional form of

dYt = [a0 + a1Xt + a2V1t + a3V2t]dt+
√
b1V1t + b2V2tdZt,
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given in Equation (17) where dYt corresponds to excess return d lnPt+
Dt
Pt
−rfdt, consumption

growth d lnCt and dividend growth d lnDt, respectively. For stock market excess return, we

have

a1 = c4 + r1 + g1mA1m,

a2 = c5 −
c1
2
+ r2 + g2mA2m,

a3 = c6 −
c2
2
+ r3 + g3mA3m,

(B30)

where c1, c2, c4, c5 and c6 are defined in Equations (B26) and (B27).

For consumption growth, we have

a1 = 1, a2 = −δc
2
, a3 = −1− δc

2
. (B31)

For dividend growth, we have

a1 = φ, a2 = −φ
2
dδd + σ2

dcδc + σ2
dv + σ2

dxδx
2

, a3 = −φ
2
d(1− δd) + σ2

dc(1− δc) + σ2
dv2 + σ2

dx(1− δx)

2
.

(B32)

We want to show Equations (A13). Given Equations (B30) and (B18), and denoting

Cov(x, y) ≡< x, y >, and pdt ≡ pt − dt, we have

<

∫ t+τ

t

dys, pt − dt >

=

∫ t+τ

t

ds < a0 + a1Xs + a2V1s + a3V2s, pdt >

=

∫ t+τ

t

ds[a1 < xs, pdt > +a2 < V1s, pdt > +a3 < V2s, pdt >]

= −
∫ τ

0

ds
[
a1A1m

σ2
x

2α
e−αs + a2A2m

σ2
1V̄1
2κ1

e−κ1s + a3A3m
σ2
2V̄2
2κ2

e−κ2s
]

where

σ2
x = φ2

x[V̄1δx + V̄2(1− δx)]

Integrating the above equation, we obtain Equation (A13), where

Cov(∆τy, p− d) = −
[
a1A1m

σ2
x

2α2
(1− e−ατ ) + a2A2m

σ2
1V̄1
2κ21

(1− e−κ1τ ),

+a3A3m
σ2
2V̄2
2κ22

(1− e−κ2τ )
]

(B33)

Var(p− d) = A2
1m

σ2
x

2α
+ A2

2m

σ2
1V̄1
2κ1

+ A2
3m

σ2
2V̄2
2κ2

, (B34)
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with

σ2
x = φ2

x[V̄1δx + V̄2(1− δx)]

which are the same given in the text. We have used the unconditional covariance:

< Xt, Xs > =
σ2
x

2α
e−α|t−s|

< Vit, Vis > =
σ2
i V̄i
2κi

e−κi|t−s|

for i = 1, 2.

Similar computation applies to obtain Equation (A17). Q.E.D.

B.5 Predictability of volatilities

First, we prove Equation (A16). To do so, we apply the following approximation:

1

τ

∫ τ

0

exp(xs)ds ≈ exp(
1

τ

∫ τ

0

xsds) (B35)

for any process xs. This is equivalent to approximating the arithmetic mean by the geometric

mean. The approximation is good when the variation of xt is small, which is true for our

variance processes because the magnitude is generally in the order of 10−3 ∼ 10−4, and the

variation of log Vt is within 1. Applying the approximation to log Vt, we have

1

τ

∫ τ

0

√
Vtdt =

1

τ

∫ τ

0

exp(
1

2
lnVt)dt ≈ exp(

1

2τ

∫ τ

0

lnVtdt). (B36)

Hence,

ln
1

τ

∫ τ

0

√
Vtdt ≈ 1

2τ

∫ τ

0

lnVtdt

=
1

2τ

[∫ τ

0

ln V̄ +

∫ τ

0

ln(1 +
Vt − V̄

V̄
)dt

]
≈ 1

2
ln V̄ +

1

2τ

∫ τ

0

Vt − V̄

V̄
dt

= Const+
1

2τ V̄

∫ τ

0

Vtdt, (B37)

which is Equation (A16).

Because of the approximation above, we can express the volatilities as an integral of

b1V1s + b2V2s over (t, t + τ). Plugging these terms into the definition of the covariance, we

then obtain Equation (A17).
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Then we provide the derivation of the AR(1) coefficient. Consider a stochastic process

of the form

b1V1t + b2V2t,

where b1 and b2 are constants. Due to independence between V1 and V2, the unconditional

auto-covariance can be evaluated as

b21
σ2
1V̄1
2κ1

exp(−κ1τ) + b22
σ2
2V̄2
2κ2

exp(−κ2τ)

and the unconditional variance can be evaluated as

b21
σ2
1V̄1
2κ1

+ b22
σ2
2V̄2
2κ2

.

Hence, the AR(1) coefficient can be computed easily based on above. Q.E.D.

B.6 Derivation of VRP

We derive the time t expected future realized variance over time period τ0 under the

risk-neutral probability. The market prices of risk for V1t and V2t are λ3 and λ4 of Equation

(B17), hence the risk premia associated with V1t and V2t are

λ3σ1
√
V1t = −ν1V1t, and λ4σ2

√
V2t = −ν2V2t, (B38)

where

ν1 =
1− γψ

1− γ
A2σ

2
1, and ν2 =

1− γψ

1− γ
A3σ

2
2. (B39)

Hence, the risk-neutral processes for V1t and V2t are

dV1t = κQ1 (
κ1

κQ1
V̄1 − V1t)dt+ σ1

√
V1tdw

Q
1t,

dV2t = κQ2 (
κ2

κQ2
V̄2 − V2t)dt+ σ2

√
V2tdw

Q
2t,

(B40)

where the risk-neutral mean-reversion coefficients for Vit are defined as

κQi = κi − νi (B41)

for i = 1, 2. In order for well-defined risk-neutral processes in Equation (B40), we need to

have κQi ’s to be positive such that

ν1 < κ1 and ν2 < κ2. (B42)
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Now we compute the squared VIX, or more generally, variance swap rate V St with maturity

τ0, defined as the risk neutral expectation of the variance. Because the risk-neutral process

and the physical process of Equation are both Heston (1993) processes, we obtain Equation

VSt =
2∑
i=1

ci(A
Q
i +BQ

i Vit),

where the constants AQi and BQ
i (i = 1, 2) are given by

AQi =
κiV̄i

κQi

[
1− 1− e−κ

Q
i τ0

κQi τ0

]
, BQ

i =
1− e−κ

Q
i τ0

κQi τ0
. (B43)

Q.E.D.

B.7 The GMM test

First, it will be useful to see why we can assume V̄1 = V̄2. In our model, the combination,

V1tδc+V2t(1−δc), is the variance of the consumption growth. The relative importance of the

two volatility factors in driving consumption variance is characterized by δc, hence without

loss of generality, we can assume V̄1 = V̄2. This is because, if we have V̄1 ̸= V̄2, we can

redefine another latent variable V ′
2t ≡ bV2t, where b =

V̄1
V̄2
, such that

dV ′
2t = κ2(V̄1 − V ′

2t)dt+ σ′
2

√
V ′
2tdw2t (B44)

with σ′
2 =

√
bσ2. By adjusting δc accordingly, the new process match exactly the same

variance of the consumption growth.

Denote h(θ) as the vector of target moments implied by the model given parameter set

θ. We choose 23 target moments as described in the text. Let hT be sample vector from

data with size T corresponding to the target moments, and expressed as

hT = ϕ(gT ) (B45)

with

gT ≡ 1

T

T∑
t=1

xt (B46)

where xt is a vector representing market data, the details are given below. The GMM

estimator {θT : T ≥ 1} is defined as

min
θT

[h(θT )− hT ]
′W [h(θT )− hT ] (B47)
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for some positive definite weighting matrix W . If the model is true and data is stationary,

then the GMM estimator must be consistent (Hansen 1982).

By optimizing the quadratic form of Equation (B47), and substituting Equation (B45)

into the first order condition, we obtain

AT [h(θT )− hT ] = AT [ϕ(g(θT ))− ϕ(gT )] = 0, (B48)

with

AT =
∂h′(θT )

∂θT
W, (B49)

and

DT =
∂h(θT )

∂θ′T
(B50)

For a consistent estimator θT , asymptotically we have Taylor expansion

plim[ϕ(g(θT ))− ϕ(gT )] =
dϕ(θ0)

dµ
× plim[g(θT )− gT ] (B51)

Let A ≡ plimAT and D ≡ plimDT , following Zhou (1994), the covariance matrix for the

target moments is

ΛT =
1

T
(I −D(AD)−1A)

[
dϕ

dµ

]
S

[
dϕ

dµ

]′
(I −D(AD)−1A)′

where S is the spectral matrix defined as

S ≡
∞∑

j=−∞

Extxt−j.

Denote

J = (h(θT )− hT )ΛT (h(θT − hT ))
′

which measures the sum of squared errors of target moments,

J ∼ χ2(# ofmoments−# of parameters),

In addition, if Jr is J-statistics with the same covariance matrix for a restricted version of

the model, then

Jr − J ∼ χ2(# of restrictions)

where the number of restrictions is the number of parameters that is restricted in one-factor

model. Q.E.D.
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B.8 Moment conditions for GMM test

In this section, we present the moment conditions for GMM estimation. The 23-dimensional

vector hT (θ) in the quadratic form h′T (θ)WT (θ)hT (θ) that we choose to minimize are the dif-

ferences between the model functions and their sample values. The first 15 moment functions

are

E(∆c) σ(∆c) AC1(∆c)
E(∆d) σ(∆d) AC1(∆d)
E(re) σ(re) AC1(re)
E(rf ) σ(rf ) AC1(rf )

E(p− d) σ(p− d) AC1(p− d)

Denote rx as consumption growth ∆c, dividend growth ∆d, excess return re, risk free rate

rf , and price-dividend ratio p− d, the above moments are given as

σ(rx) =
√
E[(rx)2]− E(rx)2

AC1(rx) =
E[rx,t+1rx,t]− E[rx]

2

E[r2x]− E[rx]2

where E(rx) are easy to compute analytically given the processes in the paper.

The 16th and 17th moments are E[VRP], σ(VRP), the expectation and standard devia-

tion of variance risk premium (VRP) defined in the text.

The 18th to 20th moments are the regression coefficients β’s. All the 3 regression coeffi-

cients are of the form of

β =
Cov(rx,t+1, (pt − dt))

Var(pt − dt)

=
E[rx,t+1, (pt − dt)]− E[rx,t+1] · E[pt − dt]

E[(pt − dt)2]− E[pt − dt]2
(B52)

where rx are consumption growth, dividend growth, excess return, resp.

The 20th to 23rd moments are the three regression β’s of volatility regressions for ∆t = 1

year. Specifically, they are

βvol =
Cov(lnVolt,t+τ , (pt − dt))

Var(pt − dt)

=
E[lnVolt,t+τ · (pt − dt)]− E[lnVolt,t+τ ] · E[pt − dt]

E[(pt − dt)2]− E[pt − dt]2

where Volt,t+τ is given in Equation (A15) and stands for volatility of consumption, dividend,

and excess return, resp. With specification of all the moment conditions, and the analyt-
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ical formula of the moments implied by the model that is solved in the paper, the GMM

estimation and tests can be carried out as usual (see, e.g., Singleton, 2006).

We show the 26 elements of the moments in gT as follows. The first 15 moments are:

E[rx], E[r
2
x], E[rx,t+1, rxt]

where rx stands for consumption growth, dividend growth, excess return, risk free rate, and

price-dividend ratio.

Moments 16 and 17 are:

E[VRPt], E[VRP
2
t ]

where VRP is the variance risk premium.

Moments 18 to 20 are:

E[rx,t+1, (pt − dt)]

where rx stands for consumption growth, dividend growth, and excess return.

Moments 21 to 26 are:

E[log Volxt], E[(log Volxt), (pt − dt)]

where x stands for consumption, dividend, and excess return. The data can be obtained

through quarterly data regression

rx,t+1 = α + βrx,t + ϵx,t

and annual expected volatility Volxt are obtained from

Volxt =
4∑

k=1

|ϵt+k| (B53)

Finally, the form of function hT = ϕ(gT ) that links the target functions hT and the

moments gT , as well as its first-order derivative matrix are elementary, and can be obtained

from authors upon request. Q.E.D.

B.9 Accuracy of the Log-linear Approximation

To show that the log-linear approximation (which is accurate when ψ = 1) is accurate

enough for the parameter values of interest, we take a three step approach. First, we show
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the standard deviation of the log consumption-wealth ratio is small. Second, we show that

the second factor of the two-factor volatility model contributes less than 2% to it. Third,

we show that the exact solution of a one-factor with the same magnitude of the standard

deviation is very close to the log-linear approximation.

First, extending the approximation in discrete-time models by many, Chacko and Viceira

(2005) show that the approximation works for continuous models too as long as the standard

deviation of the log consumption-wealth ratio does not vary too much around its uncondi-

tional mean. Specifically, the approximation is a Taylor expansion of the consumption-wealth

ratio around its unconditional mean level, denoted as g1,

Ct
Wt

= ect−ωt ≈ eE[ct−ωt] + eE[ct−ωt] · [(ct − ωt)− E(ct − ωt)],

≈ g1 − g1 log g1 + g1 log(Ct/Wt). (B54)

This implies that a small enough standard deviation of log(Ct/Wt) yields a good approxi-

mation. In Panel A of Table 1, we, like Chacko and Viceira (2005), show that the standard

deviation of this ratio is indeed small at less than 1.8% for a range of preference parameters,

and is much smaller for ψ closer to 1 (this is not surprising as the approximation is accurate

when ψ = 1). In particular, for our model parameterization, the standard deviation is 1.6%.

Second, the relative contribution of the second volatility factor to the total standard

deviation of the log consumption wealth ratio is small, as shown by the results in Panel B

of Table 1. This means that the approximation error for our two factor model is almost the

same as a one-factor model.

Finally, we have to show that the approximation error of a one-factor model is indeed

small for the parameter values of interest. To do so, we design a one-factor version of our

model with the one factor calibrated to the first volatility in our model and provide the

exact solution. (Ideally, we want to compare the exact solution of our two-factor model to

the linear approximation. But that is too complex to solve.)

The one-factor model is a non-trivial version of the two-factor one,

dCt
Ct

= µdt+
√
VtdZt,

dVt = κ(V̄ − Vt) + σ
√
Vtdwt.

We calibrate the parameters to match the first two moments of consumption growth. The

15



value function in steady state can be written as

J(Vt, Ct) = eG(Vt)
C1−γ
t

1− γ
. (B55)

It can be shown that the solution for G(V ) follows an ODE as[
1

ϵ
(β − βeϵG(V )) + (1− γ)(µ− γ

2
V )

]
+κ(V̄−V )

dG(V )

dV
+
1

2
σ2V

(
dG(V )

dV

)2

+
1

2
σ2V

d2G(V )

dV 2
= 0,

(B56)

where ϵ = 1/ψ−1
1−γ . We solve this ODE numerically and report the results in Figure 1 with

both the function values and their differences (errors). It is seen that the solution is almost

the same as the linear approximation for the parameter range we consider.

B.10 Monotonicity of the Aggregator

Theoretically, it is very important to note that the log-linear approximation of the ag-

gregator f should be an increasing function of J . Otherwise, it will be in violation of the

monotonicity axiom of preferences (see, e.g., Skiadas, 2009, Chapter 6.3). But this is not

always the case for all possible parameter values, which is a drawback of certain approxima-

tions. However, it should and must be so in the domain of interest of the state variables.

Indeed, based on the partial derivative fJ of (B2),

fJ = (θ − 1)βG− βθ,

we know that the variation of fJ is driven only by βG, which is the consumption wealth

ratio based on (B8). In order to check whether fJ > 0 for the relevant state variables, we

need to verify whether fJ is positive for the reasonable range of consumption wealth ratio,

βG, which has mean value equal to g1. Based on (B8), the standard deviation of βG can be

computed as

σcw =
√
A2

1σ
2
x + A2

2σ
2
v1 + A2

3σ
2
v2 · g1

|1− ψ|
|1− γ|

where σx, σv1, σv2 are unconditional standard deviations of state variables X,V1, V2. As a

result, we only need to check the positivity of fJ in the range of βG ∈ (g1 − 2σcw, g1 +2σcw)

of interest. Figure 1 shows the numerical values fJ in terms of the number of standard

deviation from the mean of βG. Within the range of our interest, fJ is indeed positive as it

should.
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Table 1: Unconditional Standard Deviation of the Log Consumption-Wealth Ratio

This table shows the consumption-wealth ratio variability around its long term mean level
as well as the percentage contribution of the components to the total variation. It shows
that the standard deviation of log consumption wealth ratio is less than 2%, hence the
approximation of log-linearization is a good one. In addition, the new factor contribution to
this variability is small, with less than 1%, due to its short-run nature.

EIS ψ
1.5 1.45 1.4 1.35 1.3 1.2

γ Standard Deviation of log C-W Ratio (%)
10 1.610 1.504 1.378 1.237 1.103 0.777
9 1.684 1.572 1.443 1.304 1.152 0.807
8 1.761 1.639 1.514 1.355 1.209 0.848
5 1.650 1.544 1.423 1.355 1.148 0.833

γ Contribution by the New Factor (%)
10 0.839 0.883 0.757 0.832 0.848 0.908
9 0.841 0.890 0.763 0.837 0.932 0.937
8 0.847 0.906 0.970 0.867 0.905 0.976
5 1.298 1.301 1.346 1.158 1.453 1.480
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Figure 1: Log-linear Approximation vs Numerical Solution

The figure plots the log-linear approximated vs. exact numerical solution for G(V ) of Equa-
tion (B56). The parameters are:

ψ = 1.5, γ = 10, β = 0.01, µ = 0.02, κ = 0.035, V̄ = 0.0004, σ = 0.0026,

which are designed to match the unconditional moments of consumption growth and its
volatility.
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Figure 2: Monotonicity of the Aggregator

The figure plots the partial derivative of aggregator f with respect to J , fJ , vs. the number
of standard deviation from the mean value of fJ . The parameters are taken from Table 3 of
the paper.
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