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ABSTRACT

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice
and extensively taught to MBAs. However, the estimated Markowitz portfolio rule and
most of its extensions not only underperform the naive 1/N rule (that invests equally
across N assets) in simulations, but also lose money on a risk-adjusted basis in many
real data sets. In this paper, we propose an optimal combination of the naive 1/N rule
with one of the four sophisticated strategies—the Markowitz rule, the Jorion (1986)
rule, the MacKinlay and Pastor (2000) rule, and the Kan and Zhou (2007) rule—as a way
to improve performance. We find that the combined rules not only have a significant
impact in improving the sophisticated strategies, but also outperform the 1/N rule in
most scenarios. Since the combinations are theory-based, our study may be interpreted
as reaffirming the usefulness of the Markowitz theory in practice.

Mean-variance analysis
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1. Introduction

Although more than half a century has passed since
Markowitz’s (1952) seminal paper, the mean-variance
(MV) framework is still the major model used in practice
today in asset allocation and active portfolio management
despite many other models developed by academics.! One
main reason is that many real-world issues, such as factor
exposures and trading constraints, can be accommodated
easily within this framework with analytical insights and
fast numerical solutions. Another reason is that inter-
temporal hedging demand is typically found to be small.
However, as is the case with any model, the true model
parameters are unknown and have to be estimated from
the data, resulting in the well-known parameter uncer-
tainty or estimation error problem—the estimated

! See Grinold and Kahn (1999), Litterman (2003), and Meucci (2005)
for practical applications of the mean-variance framework; and see
Brandt (2009) for a recent survey of the academic literature.
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optimal portfolio rule is subject to random errors and can
thus be substantially different from the true optimal rule.
Brown (1976), Bawa and Klein (1976), Bawa, Brown, and
Klein (1979), and Jorion (1986) are examples of earlier
work that provide sophisticated portfolio rules accounting
for parameter uncertainty. Recently, MacKinlay and
Pastor (2000) and Kan and Zhou (2007) provide more
such rules.?

In contrast to the above sophisticated strategies,
the naive 1/N diversification rule, which invests equally
across N assets of interest, relies on neither any theory nor
any data. The rule, attributed to the Talmud by Duchin
and Levy (2009), has been known for about 1,500 years,
and corresponds to the equal weight portfolio in practice.
Brown (1976) seems the first academic study of this rule.
Due to estimation errors, Jobson and Korkie (1980} state
that “naive formation rules such as the equal weight rule
can outperform the Markowitz rule.” Michaud (2008)
further notes that “an equally weighted portfolio may
often be substantially closer to the true MV optimality
than an optimized portfolio.” With similar conclusions,
Duchin and Levy (2009) provide an up-to-date compar-
ison of the 1/N rule with the Markowitz rule, and
DeMiguel, Garlappi, and Uppal (2009) compare the 1/N
rule further with almost all sophisticated extensions of
the Markowitz rule. Not only that the naive 1/N invest-
ment strategy can perform better than those sophisticated
rules recommended from investment theory, but also, as
shown elsewhere and below, most of the Markowitz-type
rules do not perform well in real data sets and can even
lose money on a risk-adjusted basis in many cases. These
findings raise a serious doubt on the usefulness of the
investment theory.

To address this problem, we examine two related
questions. First, we ask whether any of the four
sophisticated rules, namely, the Markowitz rule as well
as its extensions proposed by Jorion (1986), MacKinlay
and Pastor (2000), and Kan and Zhou (2007), can be
combined with the naive 1/N rule to obtain better
portfolio rules that can perform consistently well. Second,
we explore whether some or all of the combination rules
can be sufficiently better so that they can outperform the
1/N rule. Positive answers to these two questions are
important, for they will reaffirm the usefulness of the
Markowitz theory if the theory-based combination rules
can perform consistently well and outperform the non-
theory-based 1/N rule. The positive answers are also
possible based on both economic and statistical intuitions.
Economically, a concave utility investor will prefer a
suitable average of good and bad performances to either a
good or a bad performance randomly, similar to the
diversification over two risky assets. Statistically, a
combination rule can be interpreted as a shrinkage
estimator with the 1/N rule as the target. As is known in

2 Recent Bayesian studies on the parameter uncertainty problem,
such as Pastor (2000), Pastor and Stambaugh (2000), Avramov (2004),
Harvey, Liechty, Liechty, and Miiller (2004), Tu and Zhou (2004,
forthcoming), and Wang (2005), are reviewed by Fabozzi, Huang, and
Zhou (2010), and Avramov and Zhou (forthcoming). We focus here on
the classical framework.

statistics and in finance (e.g., Jorion, 1986), the shrinkage
is a tradeoff between bias and variance. The 1/N rule is
biased, but has zero variance. In contrast, a sophisticated
rule is usually asymptotically unbiased, but can have
sizable variance in small samples. When the 1/N rule is
combined with a sophisticated rule, an increase of the
weight on the 1/N rule increases the bias, but decreases
the variance. The performance of the combination rule
depends on the tradeoff between the bias and the
variance. Hence, the performance of the combination rule
can be improved and maximized by choosing an optimal
weight.

We find that the four combination rules are substan-
tially better than their sophisticated component rules in
almost all scenarios under our study, and some of the
combination rules outperform the 1/N rule as well, even
when the sample size (T) is as small as 120. For example,
when T=120, in a three-factor model with 25 assets and
with the annualized pricing errors spreading evenly
between —2% to 2%, for a mean-variance investor with
the risk aversion coefficient y =3, the four sophisticated
rules, namely, the Markowitz rule and its extensions of
Jorion (1986), MacKinlay and Pastor (2000), and Kan and
Zhou (2007), have utilities (or risk-adjusted returns) of
—-81.09%, —7.85%, 1.78%, and 1.61%; two of them are
losing money on a risk-adjusted basis. In contrast, their
corresponding combination rules have utilities of 3.84%,
5.79%, 1.86%, and 5.09%. Hence, all the combination rules
are better than their uncombined counterparts, and three
of them improve greatly.? In comparison with the 1/N
rule, which has a utility of 3.85% and is the best rule
before implementing combinations, two of the combina-
tion rules have significantly higher utilities. When T=240
or gets larger, while the 1/N rule, independent of T, still
has the same performance, all the other rules improve and
many of them outperform the 1/N rule much more
significantly.

The methodology of this paper is based on the idea of
combining portfolio strategies. Jorion (1986), Kan and
Zhou (2007), DeMiguel, Garlappi, and Uppal (2009), and
Brandt, Santa-Clara, and Valkanov (2009) have applied
similar ideas in various portfolio problems. In contrast to
these studies, this paper focuses on the combination of
the 1/N rule with the aforementioned Markowitz-type
rules, and on reaffirming the value of the investment
theory. In addition, from a Bayesian perspective, the idea
of combining portfolio strategies is closely related to the
Bayesian model averaging approach on portfolio selection,
which Pastor and Stambaugh (2000) apply to compare
various asset pricing models and Avramov (2002) applies
to analyze return predictability under model uncertainty.
This paper shows, along with these studies, that it is
important and valuable to combine portfolio strategies in
the presence of estimation errors.

3 The MacKinlay and Pastor (2000) rule has excellent performance
even before implementing any combination. But its combination rule
improves little. As discussed later, this is not a problem with the rule
itself, but a problem with the lack of a good estimation method for
estimating the optimal combination coefficient.
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The remainder of the paper is organized as follows.
Section 2 provides the combination rules. Section 3
compares them with the 1/N rule and with their
uncombined counterparts based on both simulated and
real data sets. Section 4 concludes.

2. Combining portfolio strategies

In this section, we study the combination of the 1/N
rule with each of the four sophisticated strategies. For
easier understanding, we first briefly illustrate the general
idea of combining two portfolio rules and then present in
detail the four combination rules in the order of their
analytical tractability.

2.1. Combination of two rules

We consider the following combination of two portfo-
lio rules:

We = (1-8)W,+ oW, )]

where w,=1y/N is the constant 1/N rule, w is an
estimated portfolio rule based on the data, and ¢ is the
combination coefficient, 0<d <1. The 1/N rule here is
applied to N risky assets of interest.? The implied portfolio
return of W¢ at T+1 is Ryr1 =ryr41 +Wc'Rry 1, where 1y
is the return on the riskless asset, and Rr. is an N-vector
of excess returns on the N risky assets.®

Assume that the excess returns of the N risky assets are
independent and identically distributed over time, and
have a multivariate normal distribution with mean u and
covariance matrix 2. Then the expected utility of W, is

UG =T 1+ y’Wc—%v‘vc’Zv“vc. @)

where y is the mean-variance investor’s relative risk
aversion coefficient. Our objective is to find an optimal
combination coefficient é so that the following expected
loss is minimized:

Lw*,w) = Uw")—E[UW)), 3)

where U(w*) is the expected utility of the true optimal
portfolio rule w* = X~ /y. This loss function is standard
in the statistical decision theory, and is the criterion that
Brown (1976), Frost and Savarino (1986), Stambaugh
(1997), Ter Horst, De Roon, and Werker (2006), DeMiguel,
Garlappi, and Uppal (2009), among others, use to evaluate
portfolio rules.

The 1/N rule is chosen as the starting point of our
combinations because it is simple, and yet can perform
remarkably well when the sample size is small. Moreover,
as is well-known in statistics (e.g., Lehmann and Casella,
1998), 1/N is one common choice of a good shrinkage

4 If the riskless asset is also included, the 1/N rule may be adjusted
to we = 15/(N+1). This, worsening from the earlier 1/N rule slightly,
makes an insignificant difference in what follows.

5 Note that the performances of most institutional managers are
benchmarked to an index, say the S&P500. Then the return on the
S&P500 index portfolio can be viewed as the riskless asset to apply the
same framework. For active portfolio management with benchmarks,
see Grinold and Kahn (1999), for example.

point for improving the estimation of the mean of a
multivariate distribution. However, the 1/N rule makes no
use of any sample information, and will always fail to
converge to the true optimal rule if it does not happen to
be equal to it. In contrast, the combination rule always
converges, and is designed to be better than either the 1/N
rule or w, theoretically.

In practice, though, the true optimal combination
coefficient & is unknown. What is feasible is only a
combination rule based on an estimated optimal 4, whose
performance will then generally vary over applications.
However, since the estimation errors in estimating the
optimal &, which is one single parameter, are usually
small, the estimated optimal combination rule can
generally improve both the 1/N rule and W in our later
analysis.

2.2. Combining with the Markowitz rule

The simplest case to start with is to combine the 1/N
rule with the standard maximum likelihood (ML) rule or
the (estimated) Markowitz rule. Let 4 and % be the
sample mean and covanance matrix of Rr.q, then the ML

rule is given by wMt =57 f1/y. Instead of using WM, we
use a scaled one:
1 -1
w=-2 [, (CY)
7 H

where £ -(T/(T—N—Z))Z The scaled W is unbiased and
performs slightly better than w ML
According to (1), the combmatlon rule is

Then the expected loss associated with w, is (all proofs
are in the appendices)

Low* o) = L[(1-07m: + 8, ®)

where
1 = (We=W') E(We—W*), T3 = E[(W—wW"yZ(W-w")].

Note that ; measures the impact from the bias of the 1/N
rule, and 7, measures the impact from the variance of w.
Thus, the combination coefficient & determines the
tradeoff between the bias and the variance. The optimal
choice is easily shown as
* T
- T +T7 :

)
Summarizing the result, we have

Proposition 1. If 7, >0, then there exists an optimal §°,
0 <d" <1, such that

L(W* ,W¢) < min[L(W*,we),L(w* ,W)], 8)

i.e., the optimal combination rule w, strictly dominates both
the 1/N rule and w.

The condition 7m; >0 is trivially satisfied in practice
because the 1/N rule will not be equal to the true optimal
rule with probability one. Proposition 1 says that the
optimal combination rule W, indeed provides strict
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improvements over both the 1/N rule and W.5 Suppose
7 = 73, then 8* = 1/2, and the loss of w, will be only one-
half of the loss of either the 1/N rule or W. This works
exactly like a diversification over two independent and
identically distributed risky assets.

To estimate ¢, we only need to estimate 7, and 7,
which can be done as follows:

o =we’}fw,—-5-w,’ﬂ+;—2@2, 9

C]N
2T

where 8 is an estimator of 6% = =~ t given by Kan and
Zhou (2007), and ¢; = (T-2)(T-N-2)/((T-N—-1)(T-N—4)).
The condition of T> N+4 is needed here to ensure the
existence of the second moment of £~ . Summarizing,
we have

72 =—]-2—(c1 1)9 + = 10)

Proposition 2. Assume T > N+4. On the combination of the
1/N rule with W, w = (1-0)w, + 6W, the estimated optimal
one is

WM = (1-8)w, +6W, an
where 3=ﬁ1/(ﬁ1+frz) with #t; and 7t given by (9) and
(10).

Proposition 2 provides a simple way to optimally
combine the 1/N rule with the unbiased ML rule w. This
combination rule is easy to carry out in practice since it is
only a given function of the data. However, due to the
errors in estimating §*, there is no guarantee that the
estimated optimal combination rule, W™ will always be
better than either the 1/N rule or W. Nevertheless,
in our later simulations, the magnitude of the errors in
estimating 6%, though varym% over different scenarios, are
generally small. Hence, w does improve upon W, and
can either outperform the 1/N rule or achieve close
performances in most scenarios. Therefore, the combina-
tion does provide 1mR|rovements overall. In addition, as T
goes to infinity, w converges to the true optimal
portfolio rule.

2.3. Combining with the Kan and Zhou (2007) rule

" Consider now the combination of the 1/N rule with the
Kan and Zhou (2007) rule, w*¢, which is motivated to
minimize the impact of estimation errors via a three-fund
portfolio. With # and 2, as defined in their paper (as
estimators of the squared slope of the asymptote to the
minimum-variance frontier and the expected excess
return of the global minimum-variance portfolio), we
have

Proposition 3. Assume T > N+4. On the combination of
the 1/N rule with the Kan and Zhou (2007) rule, w. =
Qa —5k)w,+5kv‘v'<z, the estimated optimal one is

VI = (1=-6)We + 8, WK, (12)

8 Proposition 1 can be extended to allow any fixed constant rules,
and can be adapted to allow biased estimated rules as well.

where &y = (11 —ft13)/(ft1—27113 + L 3) with 7ty given by (9),
and fty3 and ft3 given by

N 1-2 1

fiy= 50— e;z+——([nweu+(1 )itgWe 1x)
—;[ﬁﬁ’i -5 ). (13)
N 152 1 -2 N,

Proposition 3 provides the estimated optimal combl-
nation rule that combines the 1/N rule with Wi . By
design, it should be better than the 1/N rule if the errors in
estimating the true optimal §; are small and if the 1/N
rule is not exactly identical to the true optimal portfolio
rule, This is indeed often the case in the performance
evaluations in Section 3.

2.4. Combining with the Jorion (1986) rule

Consider now the combination of the 1/N rule with the
Jorion (1986) rule, W™, which is motivated from both the
shrinkage and Bayesian perspectives. Assume T > N+4 as
before. The optimal combination coefficient can be solved
analytically in terms of the moments of wh,

Ty —(We—w*) SEW? —w*] .
" = 2(We—wry ZEWI —we ]+ [P —wey S04 P —we))

(15)

However, due to the complexity of w", the analytical

evaluation of the moments is intractable. In Appendix B,

we provide an approximate estimator, 0;, of J;, so that the
estimated optimal combination rule,

WP

=(1 —Sj)We"'SjWPJ. (16)

can be implemented easily in practice.
2.5. Combining with the MacKinlay and Pastor (2000) rule

In order to provide a more efficient estimator of the
expected returns, MacKinlay and Pastor (2000) utilize an
extension of the capital asset pricing model (CAPM):

Rt = ot+ ff +é&r. 17)

where f; is a latent factor. Let 4™ and 2™ be the
maximum likelihood estimators of the parameters in
their latent factor model (see Appendix C for the details),
then the (estimated) MacKinlay and Pastor portfolio
rule is given by the standard Markowitz formula,

wMP (Z )‘I aMP /7. To optimally combine the 1/N rule
with wMP, we need to evaluate the optimal combination
coefficient:
_ 1~ (e ~wy ZEWM —w]
71 —2(We—w*y SEPAM —we] + E(W™MF —wey 2™ —w))
(18)
This requires the evaluation of the expectation terms

associated with w™*. Since it is difficult to obtain them
analytically, we use a Jackknife approach (e.g., Shao and
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Tu, 1996) to obtain an estimator, 5,,,, of o, Via

T
Ew™M —w] = T(\Az"""—w*)-T—"T—1 S @@ -wn, (19)
t=1

~ T -wry E -w))
T-1, . . .
— = LT —wy S -w), (20)
t=1
where W'f'," is the (estimated) MacKinlay and Pastor rule
when the t-th observation (t=1,...,T) is deleted from the
data. Then the estimated optimal combination rule is

WMP — (1=8m)We + 8 WM. @1

With the preparations thus far, it is ready to assess the

performances of wMP
and real data sets.

and other rules in both simulations

2.6. Alternative combinations and criteria

Before evaluating the combination rules provided above,
we conclude this section by discussing some broader
perspectives on the combination methodology.” First, on
various ways of combining, what are the gains with
combining more than two rules and with combining two
rules not including the 1/N rule? Theoretically, if the true
optimal combination coefficients are known, combining
more than two rules must dominate combining any subset
of them. However, the true optimal combination coefficients
are unknown and have to be estimated. As more rules are
combined, more combination coefficients need to be
estimated and the estimation errors can grow. Hence,
combining more than two rules may not improve the
performance. In addition, combining two rules not including
the 1/N rule is usually not as good as including the 1/N rule,
as done by our approach here. Nevertheless, certain optimal
estimation methods might be developed to improve the
performances of the more general combination approaches,
which is an interesting subject for future research.

Second, on the objective of combining, what happens if
the combination is to maximize a different objective
function? The Sharpe ratio is such a natural objective
which seems at least as popular as the utilities or risk-
adjusted returns. When the true parameters are known,
maximizing the Sharpe ratio and maximizing the ex-
pected utility are equivalent, a well-known fact. However,
once the true parameters are unknown, the two are
different. In this paper, we focus on maximizing the
expected utility as it is easier to solve than maximizing
the Sharpe ratio because the latter is to maximize a highly
nonlinear function of the portfolio weights and there are
no closed-form solutions available in the presence of
estimation errors. Interestingly, though, due to their
equivalence in the parameter certainty case, the combina-
tion strategies of this paper, designed to maximize the

7 We are grateful to an anonymous referee for these and many other
insights that help to improve the paper enormously.

expected utility, do in general have higher Sharpe ratios
than their uncombined components.

3. Performance evaluation

In this section, we evaluate the performances of the
four combination rules and compare them with their
uncombined counterparts and the 1/N rule; based on both
simulated data sets (10,000 of them) and real data sets.

3.1. Comparison based on simulated data sets

Following MacKinlay and Péstor (2000), and DeMiguel,
Garlappi, and Uppal (2009), we assume first the CAPM
model with an annual excess return of 8% and an annual
standard deviation of 16% on the market factor. The factor
loadings, f's, are evenly spread between 0.5 and 1.5. The
residual variance-covariance matrix is assumed to be
diagonal, with the diagonal elements drawn from a
uniform distribution with a support of [0.10, 0.30] so that
the cross-sectional average annual idiosyncratic volatility
is 20%. In addition, we make two extensions. First, we
examine not only a case of the risk aversion coefficient
y =3, but also a case of y=1. Second, we allow nonzero
alphas as well to assess the impact of mispricing on the
results. This seems of practical interest because a given
one-factor model (or any given K-factor models, in
general) may not hold exactly in the real world.

Table 1 provides the average expected utilities of the
various rules over the simulated data sets without
mispricing and with N=25 assets, where the risk-free
rate is set as zero without affecting the relative perfor-
mances of different rules. Panel A of the table corresponds
to the case studied by DeMiguel, Garlappi, and Uppal
(2009) with y =3. The true expected utility is 4.17 (all
utility values are annualized and in percentage points),
greater than those from the estimated rules as expected
due to estimation errors. But the four combination rules
all have better performances than their uncombined
counterparts, respectively. However, in comparison with
the 1/N rule, which achieves a good value of 3.89, the
combination rules have lower utility values, 1.68, 1.42,
2.19, and 3.71, when T=120. Despite the improvements
over their estimated uncombined counterparts, the

‘combination rules suffer from estimation errors and still

underperform the 1/N rule when T is small.

Why does the 1/N rule perform so well in the above
case? This is because the assumed data-generating
process happens to be in its favor: holding the 1/N
portfolio is roughly equivalent to a 100% investment in
the true optimal portfolio. To see why, we note first
that the betas are evenly spread between 0.5 and 1.5, and
so the 1/N portfolio should be close to the factor portfolio.
Second, under the assumption of no mispricing, the factor
portfolio is on the efficient frontier, and hence, the true
optimal portfolio must be proportional to it. The propor-
tion depends on y. With y = 3, the 1/N portfolio happens
to be close to the true optimal portfolio, as evidenced by
its utility value of 3.89 that is close to the maximum
possible. It is therefore difficult for any other rules, which
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Table 1
Utilities in a one-factor model without mispricing.

This table reports the average utilities (annualized and in Fpercentage points) of a mean-variance investor under various investment rules: the true
optimal rule, the 1/N rule, the ML rule, the Jorion (1986) rule, the MacKinlay and Pastor (2000) rule, the Kan and Zhou (2007) rule, and the four
combination rules, with 10,000 sets of sample size T simulated data from a one-factor model with zero mispricing alphas and with N=25 assets. Panels A

and B assume that the risk aversion coefficient y is 3 and 1, respectively.

T

Rules 120 240 480 960 3000 6000
Panel A: y=3

True 4.17 417 417 417 417 417

1/N 3.89 389 389 3.89 3.89 3.89

ML -85.72 -25.81 -835 -1.61 242 330

Jorion -12.85 -3.79 -0.18 1.55 298 347

MacKinlay-Pastor 2.11 3.00 344 3.65 3.79 3.83

Kan-Zhou ~2.15 -0.00 1.13 1.90 297 347

WML 1.68 295 342 3.60 3.81 3.90

WP 1.42 293 3.46 37 3.88 3.86

wMP 2.19 3.05 348 3.67 3.80 3.83

w2 37 3.77 3.81 3.85 3.91 3.95

Panel B: y=1

True 12.50 12.50 12.50 12.50 12.50 12.50
1/N 6.63 6.63 6.63 6.63 6.63 6.63

ML —257.16 -77.42 -25.05 —483 7.25 9.91

Jorion —38.55 -11.38 -055 4.66 8.95 1042
MacKinlay-Pastor 6.33 9.00 1031 1094 11.37 11.48
Kan-Zhou —-6.44 -0.01 338 5.69 8.92 10.40
wML 1.14 479 6.39 747 9.50 10.62
WP 1.28 5.68 6.97 7.11 7.46 1034
wMP 6.57 9.16 10.49 11.09 1095 1143
Wz 6.36 6.70 6.99 741 8.78 9.97

are estimated from the data, to outperform the 1/N rule in
the above particular case.

However, when y =1, the 1/N rule will no longer be
close to the true optimal portfolio. This is also evident
from Panel B of Table 1. In this case, the expected utility is
12.50 from holding the true optimal portfolio. In contrast,
if the 1/N rule is followed, the expected utility is much
lower: 6.63. Note that, although the 1/N rule is not
optimal, it still outperforms the other rules when T=120.
The reason is that the 1/N rule now still holds correctly
the efficient portfolio, though the proportion is incorrect.
In contrast, the other rules depend on the estimated
weights, which approximate the efficient portfolio
wgghts with estimation errors. Nevertheless, w™° and
W™“ have close results to the 1/N rule when T=120, and
they do better than it when T >240. Overall, the
combination rules improve the performances in this case
as well and they do better in outperforming the 1/N rule
than previously. After understanding the sensitivity of the
1/N rule to y, we assume y =3 as usual in what follows.

When there is mispricing, Panel A of Table 2 reports
the results where the annualized mispricing alphas are
evenly spread between —2% to 2%. The combination rules
again generally have better performances than their
uncombined counterparts. Now the 1/N rule gets not only
the proportion but also the composition of the optimal
portfolio incorrect, since the factor portfolio is no longer

on the efficient frontier. In this case, the expected utility
of the 1/N rule, 3.89, is not close to but is about 40% less
than the expected utility of the true optimal rule, 6.50.
Now the combination rules not only improve, they also
outperform the 1/N rule more easily than before (Panel A
of Table 1).

For the interest of comparison, we now study how the
rules perform in a three-factor model. We use the same
assumptions as before, except now we have three factors,
whose means and covariance matrix are calibrated based
on the monthly data from July 1963 to August 2007 on the
market factor and Fama-French’s (1993) size and book-to-
market portfolios. The asset factor loadings are randomly
paired and evenly spread between 0.9 and 1.2 for the
market 8's, between —0.3 and 1.4 for the size portfolio f's,
and between -05 and 0.9 for the book-to-market
portfolio f's. Panel B of Table 2 provides the results with
the same mispricing distribution as before (Panel A of
Table 2). Once again, the combination rules are generally
better than their estimated uncombined components.
Since the 1/N rule is now far away from being the true
optimal portfolio, it is outperformed by some of the
combination rules even with T=120. As T increases, the
combination rules perform even better. Overall, combina-
tion improves performance, and some combination rules
can outperform the 1/N rule in general. This suggests that
there is indeed value-added through combining rules and
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Table 2
Utilities in factor models with mispricing.

This table reports the average utilities (annualized and in percentage points) of a mean-variance investor under various investment rules: the true
optimal rule, the 1/N rule, the ML rule, the jorion {1986) rule, the MacKinlay and Pastor (2000) rule, the Kan and Zhou (2007) rule, and the four
combination rules, with N=25 assets for 10,000 sets of sample size T simulated data from a one-factor model (Panel A) and a three-factor model (Panel B),
respectively. The annualized mispricing a's are assumed to spread evenly between —2% to 2%. The risk aversion coefficient y is 3.

T
Rules 120 240 480 960 3000 6000
Panel A: One-factor model
True 6.50 6.50 6.50 6.50 6.50 6.50
1/N 3.89 3.89 3.89 3.89 3.89 3.89
ML —84.75 —23.84 -6.18 0.65 473 5.62
Jorion -12.36 -2.99 095 3.09 5.06 5. 71
MacKinlay-Pastor 234 323 3.67 3.88 402 4.06
Kan-Zhou -235 0.02 1.64 3.14 5.06 5.71
WML 2.02 332 391 443 538 5.82
w 227 3.70 4.02 392 4.83 5.72
wMP 24 3.27 3N 3.90 4.02 4.04
wekz 3.84 395 4.12 441 5.14 5.62
Panel B: Three-factor model
True 14.60 14.60 14.60 14.60 14.60 14.60
1/N 3.85 385 385 3.85 385 3.85
ML -81.09 -17.11 1.39 8.52 12.76 13.69
Jorion -~7.85 2.84 7.65 1045 12.99 13.75
MacKinlay-Pastor 1.78 2.66 3.09 3.30 3.44 3.48
Kan-Zhou 1.61 512 7.96 1045 12.99 13.75
WML 3.84 6.15 8.44 10.63 13.02 13.76
weH 5.79 5.36 417 9.67 13.02 13.76
wMP 1.86 273 3.12 3.30 345 3.48
w2 5.09 6.06 7.57 9.59 12.56 13.58

by using portfolio theory to guide portfolio choice over
the use of the naive 1/N diversification.®

3.2. Other properties of the combinations

In this subsection, we explore two aspects about the
combination rules. First, while the combination rules are
designed to maximize the expected utility, we also
examine their performances in terms of the Sharpe ratio,
and provide the standard errors for both the utilities and
Sharpe ratios of the rules over the simulated data sets.
Second, we study the estimation errors of the combina-
tion coefficients.

Table 3 provides in percentage points the Sharpe ratios
in the one-factor model. Panel A of the table corresponds
to the earlier case studied in Panel A of Table 1. Similar to
the case in utilities, the combination rules generally
improve the Sharpe ratio substantially, despite that
maximizing the expected utility may not maximize the
Sharpe ratio simultaneously in the presence of parameter
uncertainty as discussed in Section 2.6. Prior to combin-
ing, all the estimated rules, except the MacKinlay and
Pastor rule, have Sharpe ratios less than 5.0 when T=120.
In contrast, the combination rules have Sharpe ratios close
to that of the 1/N rule, 13.95, which in turn is close to the

8 The same conclusion holds when the number of assets is 50, orin a
model without factor structures. The results are available upon request.

Sharpe ratio of the true optimal rule, 14.43. As discussed
earlier on utilities, the reason why the 1/N rule does so
well is because it is set roughly equal to the true optimal
portfolio in this particular simulation design. When some
mispricing is allowed (Panel B of Table 3), generally
speaking, the combination rules again improve, and they
are better than before.®

So far, the combination rules improve significantly
across various simulation models. Hypothetically, this
might happen with large standard errors in the utilities
across data sets. To address this issue, Table 4 reports the
standard errors of all the strategies when the data are
drawn from a three-factor model with the annualized
mispricing «'s ranging from -2% to 2%, the case
corresponding to Panel B of Table 2.'° Both the true and
the 1/N rules are data-independent, and so their expected
utilities are the same across data sets. For the estimated
rules, their expected utilities are data-dependent and vary
across data sets with their standard errors ranging from
0.29% to 12.37%, when T=120. The combination rules, in
general, have smaller standard errors than their estimated
component rules, especially when the sample size is less
than 480. Similar results are also true for the standard

9 Similar results hold, though not reported, in the three-factor model
as well as in the non-factor model.

10 The results in other simulation models are similar, and are
omitted for brevity.
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Table 3
Sharpe ratios in a one-factor model.

This table reports in percentage points the average Sharpe ratios of a mean~variance investor under various investment rules: the true optimal rule, the
1/N rule, the ML rule, the jorion (1986) rule, the MacKinlay and Pastor (2000) rule, the Kan and Zhou (2007) rule, and the four combination rules, with
10,000 sets of sample size T simulated data from a one-factor model with N=25 assets. Panels A and B assume that the annualized mispricing o’s are zeros

or between —2% to 2%, respectively.

T

Rules 120 240 480 960 3000 6000
Panel A: a=0

True 14.43 14.43 14.43 1443 1443 14.43
1/N 13.95 13.95 13.95 13.95 13.95 13.95
ML 3.88 5.59 7.54 9.54 12.19 13.18
Jorion 4.54 6.46 8.40 10.18 12.38 13.24
MacKinlay-Pastor 12.19 13.51 13.86 13.89 13.89 13.89
Kan-Zhou 4.97 7.03 8.80 10.27 1234 13.24
wML 12.04 12.88 13.34 13.53 13.83 13.98
wH 1040 12.36 13.22 13.67 13.94 13.90
wMP 12.07 13.44 13.87 13.90 13.89 13.89
Wz 13.70 13.79 13.86 13.91 14.00 14.07
Panel B: o in [ —2%, 2%]

True 18.02 18.02 18.02 18.02 18.02 18.02
1/N 13.95 13.95 13.95 13.95 13.95 13.95
ML 592 834 10.94 1332 16.06 16.97
Jorion 5.61 8.03 10.69 13.16 16.03 16.95
MacKinlay-Pastor 12.70 13.98 14.28 14.30 14.31 1431
Kan-Zhou 4.77 7.15 10.09 12.97 16.02 16.95
wML 12.81 13.69 14.30 15.02 16.45 17.09
wH 11.64 13.73 14.31 14.12 15.60 16.96
wMP 12.52 13.89 14.26 14.28 14.27 14.25
wz 14.02 14.23 14.54 15.04 16.21 16.91

errors of the Sharpe ratios, as reported in Panel B of
Table 4.

To see how the 1/N rule contributes to the combination
strategies, Table 5 reports both the true and the average
estimated optimal combination coefficients for the four
combination rules, with the data simulated in the same

way as in Table 4. Consider first W™ and W™, When

T=120, the true optimal coefficient & for w™", denoted
simply by é in the table, is 15.74%, but the average estimated
one is 20.56%, biased upward. So the latter uses 79.44% (=1-
20.56%) of the 1/N rule. In contrast, the true optimal é for

W™, 53.78%, is much larger, and the average estimated value
is 56.18%, slightly biased upward with much less usage of the
1/N rule. The standard error of the estimated J is also

relatively smaller for W, As Tincreases, the true optimal §’s
are increasing as expected. It is of interest to note that the 1/N
rule remains to possess a few percentage points in the
weighting even when the sample size is 6,000.

on W and W™P, the estimates of their optimal
combination coefficients have larger biases. This is

because now we do not have analytical and accurate
estimation formulas for them, unlike the case for w™"
and W™, In particular, the bias in estimating the optimal
combination coefficient for w™ is quite large, which

explains why the combination rule w™F barely improves.
Clearly, if better estimation methods are found, the

performances of -~ and Ww™? should improve. This will

be yet another direction for future research.

Because of the small improvements of w™° over w
due to the inaccurate estimate of the true optimal
combination coefficient, it may make sense to consider a
simple naive combination of the MacKinlay and Pastor rule
with the 1/N rule by using a 50% weight. As it turns out in
the next subsection, this naive combination rule can
improve over both WM’ and W™ and can perform well
consistently across all real data sets in our study for practical
sample sizes of 120 or 240. However, the same naive
procedure does not improve W consistently because the
difference (not reported here) between W~ and its true
optimal combination rule (using the true optimal combina-
tion coefficient) is, in general, much smaller than that in the
case of the MacKinlay and Pastor rule. As a result, we
consider the naive combination only for the MacKinlay and
Pastor rule in the next subsection.

CPJ

P

3.3. Empirical application

Now we apply the various rules to the real data sets,
which are those used by DeMiguel, Garlappi, and Uppal
(2009),'" as well as the Fama-French 49 industry

1 We thank Victor DeMiguel for the data. A detailed description of
the data can be found in DeMiguel, Garlappi, and Uppal (2009).
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Table 4
Standard errors of utilities and Sharpe ratios.

This table reports the standard errors (in percentage points) of the utilities (Panel A) and the Sharpe ratios (Panel B) for all the strategies with 10,000
sets of sample size T simulated data from a three-factor model with N=25 assets. The annualized mispricing «'s are assumed to spread evenly between
~2% to 2%. The risk aversion coefficient y is 3.

T
Rules 120 240 480 960 3000 6000
Panel A: Standard errors of utilities
True 0 0 0 0 0 0
1/N 0 0 0 0 0 0
ML 1237 329 1.24 053 0.15 0.08
Jorion 3.55 1.26 0.61 033 0.13 0.07
MacKinlay-Pastor 0.75 036 0.17 0.09 0.03 0.01
Kan-Zhou 1.44 0.72 0.50 032 0.13 0.07
WML 1.24 0.62 047 0.31 0.13 0.07
WP 049 037 0.31 0.70 0.13 0.07
WwMP 0.67 033 0.16 0.08 0.03 0.01
wke 029 035 0.40 0.36 0.17 0.08
Panel B: Standard errors of Sharp ratios
True 0 (] 0 0 0 0
1/N 0 0 0 0 0 0
ML 4.02 3.01 2.00 1.19 043 0.22
Jorion 4.18 2.87 1.84 112 042 0.22
MacKinlay-Pastor 6.87 3.54 1.16 0.27 0.04 0.03
Kan-Zhou 4.51 2.82 1.90 1.16 0.42 0.22
WML 244 222 1.85 1.12 042 0.22
WP 257 225 228 3.22 043 0.22
WM 6.36 338 0.80 0.07 0.04 0.03
we 1.66 1.88 1.84 1.30 045 0.23

Table 5
Combination coefficients.

This table reports in percentage points the true optimal combination coefficients, the average estimated optimal combination coefficients and their
standard errors (in parentheses) for the four combination strategies. The data are simulated in the same way as in Table 4.

T

Parameters 120 240 480 960 3000 6000

Panel A; wMt

) 15.74 29.93 47.57 65.12 85.60 92.27

5 20.56 2938 45.16 63.73 85.35 92.20
(10.87) (13.44) (12.49) (7.61) (2.05) (0.80)

Panel B:

5 27.56 46.65 65.29 80.32 93.90 97.17

3 35.95 17.61 11.52 87.90 100.00 100.00
(12.78) (16.41) (29.55) (32.63) (0.00) (0.00)

Panel C: wMP

Sm 28.50 42.54 56.06 66.62 76.25 78.93

Sm 97.02 97.27 98.03 99.37 100.00 100.00
(1.14) (0.89) (0.87) (0.75) (0.00) (0.00)

Panel D: w™¢

Oy 53.78 68.09 79.87 88.35 95.81 97.84

5 56.18 57.37 63.49 72.26 86.43 92.27
(6.37) (7.70) (7.88) (6.49) (3.09) (1.52)

portfolios plus the Fama-French three factors and the Given a sample size of T, we use a rolling estimation
earlier Fama-French 25 portfolios plus the Fama-French approach with two estimation windows of length M=120

three factors. and 240 months, respectively. In each month ¢, starting
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Table 6
Certainty-equivalent returns based on the real data sets.

This table reports the certainty-equivalent returns (annualized and in percentage points) of a mean-variance investor under various investment rules:
the true optimal rule, the 1/N rule, the ML rule, the Jorion (1986) rule, the MacKinlay and Pastor (2000) rule, the Kan and Zhou (2007) rule, and the four
combination rules. While the in-sample ML rule uses all the data for its estimation, the other estimated rules are based on a rolling sample with an
estimation window M=120 (Panel A) or 240 (Panel B). The real data sets are the five data sets used by DeMiguel, Garlappi. and Uppal (2009), and two
additional data sets, the Fama-French 25 size (SMB) and book-to-market portfolios (HML) with the Fama-French three factors and the Fama-French 49
industry portfolios with the Fama-French three factors. The risk aversion coefficient y is 3.

Industry Inter’l Mkt/ FF- FF- FF25 Indu49
portfolios portfolios SMB/HML 1-factor 4-factor 3-factor 3-factor
Rules N=11 N=9 N=3 N=21 N=24 N=28 N=52
Panel A: M=120
ML (in-sample) 8.42 7.74 13.61 46.04 54.55 4524 57.67
/N 3.66 3.26 433 5.27 5.92 5.51 5.14
ML —38.18 -18.30 4.90 —100.69 —128.59 -194.33 —-1173.78
Jorion -9.21 -5.80 9.51 0.82 1.99 —20.72 -152.10
MacKinlay-Pastor -0.76 0.86 -020 047 0.37 1.02 1.45
Kan-Zhou -359 ~3.42 9.51 20.75 22,01 9.15 -17.77
WML -1.39 -034 6.39 22.25 26.06 14.62 -6.40
wH 3.15 1.74 4.52 6.39 11.10 6.77 -1.20
WweMP 221 2.26 2.64 33 3.54 3.67 357
wcz 3.02 1.79 8.54 28.97 2935 19.36 8.51
Panel B: M=240
ML (in-sample) 8.42 7.74 13.61 46.04 54.55 45.24 57.67
1/N 5.04 092 3.46 4.44 4.95 5.09 5.48
ML -14.30 -6.94 12.08 -5.10 -38.63 —-20.80 -158.40
Jorion -0.76 -138 12.40 23.15 10.56 10.44 -18.70
MacKinlay-Pastor 2.84 -0.02 0.44 278 267 3.37 4.32
Kan-Zhou 1.89 -0.17 12.21 26.60 19.61 14.08 12.43
weMt 4.58 0.29 11.96 18.73 18.97 16.70 6.29
WP 419 0.07 12.40 -19.01 —8.99 7.38 14.55
weMP 4.11 0.49 2.20 371 3.88 431 4.95
w2 5.40 0.88 11.03 26.84 30.25 20.09 16.28

from t=M, we use the data in the most recent M months
up to month ¢t to compute the various portfolio rules, and
apply them to determine the investments in the next
month. For instance, let w,, be the estimated optimal
portfolio rule in month t for a given rule ‘2’ and let r;.; be
the excess return on the risky assets realized in month
t+1. The realized excess return on the portfolio is
Tzt41 =WozTe1. We then compute the average value of
the T — M realized returns, j,, and the standard deviation,
6. The certainty-equivalent return (CER) is thus given by

CER, = fi,— % 62, 22)
which can be interpreted as the risk-free rate of return
that an investor is willing to accept instead of adopting
the given risky portfolio rule z. Clearly the higher the CER,
the better the rule. As before, we set the risk aversion
coefficient y to 3. Note that all the CERs have a common
term of the average realized risk-free rate, which cancels
out in their differences. Hence, as in the case for the
expected utilities, we report the CERs by ignoring the risk-
free rate term.

With the real data, the true optimal rule is unknown.
We approximate it by using the ML estimator based on
the entire sample. This will be referred to as the in-sample
ML rule. Although this rule is not implementable in
practice, it is the rule that one would have obtained based

on the ML estimator had he known all the data in advance.
Its performance may serve as a useful benchmark to
measure how the estimation errors affect the out-of-
sample results. Table 6 reports the resuits. Due to
substantially less information in the rolling sample, all
rules have CERs (annualized and in percentage points as
before) less than half of those from the in-sample ML rule
in most cases.

The first real data set, the 10 industry portfolios plus
the market portfolio, is a good example that highlights the
problem of the existing estimated rules. When M=120,
the in-sample ML rule has a CER of 8.42, the 1/N rule has a
decent value of 3.66, and WP, w™®, and w2 have 3.15,
2.21, and 3.02. But the others including ail the four
uncombined estimated rules have negative CERs, ranging
from —38.18 to —0.76, that is, they lose money on a risk-
adjusted basis. For the second real data set, the interna-
tional portfolios, the 1/N rule remains hard to beat. Unlike
the other uncombined estimated rules, the MacKinlay and
Pastor rule, and three combination rules have positive
CERs. For all the remaining five data sets, the four
combination rules work well in most cases. Overall, both
W™ and W™ have positive CERs consistently across all
the seven data sets. This is an obvious improvement over
the four uncombined theoretical rules, which can have
negative CERs or lose money on a risk-adjusted basis.
When M=240, the results are even better. Both w™" and
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W™ now still have positive CERs consistently across all
the seven data sets. Moreover, most of the combination
rules not only improve, but also outperform the 1/N rule
most of the time.

In short, when applied to the real data sets, the
combination rules generally improve from their uncom-
bined Markowitz-type counterparts and can perform
consistently well, and some of them can outperform the
1/N rule in most of the cases.

4. Conclusion

The modern portfolio theory pioneered by Markowitz
(1952) is widely used in practice and extensively taught to
MBAs. However, due to parameter uncertainty or estima-
tion errors, many studies show that the naive 1/N
investment strategy performs much better than those
recommended from the theory. Moreover, the existing
theory-based portfolio strategies, except that of MacK-
inlay and Pastor (2000), perform poorly when applied to
many real data sets used in our study. These findings raise
a serious doubt on the usefulness of the investment
theory. In this paper, we provide new theory-based
portfolio strategies which are the combinations of the
naive 1/N rule with the sophisticated theory-based
strategies. We find that the combination rules are
substantially better than their uncombined counterparts,
in general, even when the sample size is small. In
addition, some of the combination rules can perform
consistently well and outperform the 1/N rule signifi-
cantly. Overall, our study reaffirms the usefulness of the
investment theory and shows that combining portfolio
rules can potentially add significant value in portfolio
management under estimation errors.

Since parameter uncertainty appears in almost every
financial decision-making problem, our ideas and results
may be applied to various other areas. For example, they
may be applied to turn many practical quantitative
investing strategies (e.g., Lo and Patel, 2008) into those
more robust to estimation errors; they may also be
applied to hedge derivatives optimally in the presence
of parameter uncertainty; or be applied to make optimal
capital structure decisions with unknown investors’
_expectations and macroeconomic determinants. While
studies of these issues go beyond the scope of this paper,
they seem interesting topics for future research.

Appendix A. Proofs of propositions and equations
A.1. Proof of Proposition 1
Based on (6), we need only to show
F©@)=(1=8)*m) + &My = 1y —20m1 + 62 (1 +72) (23)

satisfies f'(6") =0 and f"(6") > 0 at 8", which are easy to
verify. Then the claim follows.

A.2. Proof of Eq. (10)

In many expectation evaluations below, a key is to
apply two equalities about the inverse of the sample
covariance matrix (e.g., Haff, 1979), i.e,, the formulas for
g2'257'512) and F2'257" 25715172, Expanding out
the quadratic form of 7, into three terms, and applying
the formulas to the two terms involving W, we have

1 N
Ty = F(cl—])92+9——. (24)

Then, plugging the estimator for * into this equation
yields the desired claim.

A.3. Proof of Proposition 3

Now, we have

Lw".we) = 2 E[l(1-8)(We—w")

+ SW—wW Z[(1-3)(We—wW") +S(W—w")]],
where w denotes W*¢ for brevity. Let a=w,—w* and
b=w-wr*, then the following identity holds:
[(1-8)a+obY Z[(1-0)a+db)

=(1-50P%a’Za+25(1-8)aZb+*b'Zh.

Taking the first-order derivative of this identity, we obtain
the optimal choice of J,

_ aZa—a ZE[b]

T a'Xa-2a'ZE[b)+EbXb]
It is clear that m; =a'Za. Let my3 = a'ZE[b] =w, JE[W]-
We'u— W EW]+pZ " . Since HS =Tz (T-N-2). we
can estimate 7,3 with 7,3 as given by (13). Finally, let

73 = E[b'Xb]. Using Eq. (63) of Kan and Zhou (2007), we
can estimate 73 with 73 as given by (14).

] (25)

Appendix B. Combining with the Jorion (1986) rule

Eq. (15) follows from (25). To compute gE™M 1™,
we rewrite

$P —d5 40D, 26)

where d and D are defined accordingly from (26).
Inverting this matrix, we have

EN1 =57 a5 po 57 (@ +dD'E ' D)= 57 /d-B,
@7

where B is defined as the second term. Since it is relatively

small, we treat it as a constant. Then, we approximately

evaluate E[(Z PJ)";2"*’] as the product of the expectations.
Finally, we have from (27) that

EM gy =57 51

257" /d2-2(37 £B/d)+ (B ZB).
28)

The first term can be evaluated as in Proposition 3. The
second and third terms are trivial. Hence, we can evaluate

approximately E@” E™ 1 2E%) 1 4%) by treating 5"
and ¥ as independent variables.
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Appendix C. Semi-analytical solution to the MacKinlay
and Pastor (2000) rule

Assume normality with E(f;)=0, var(f,):of.
E(f..er)=0n, and that the covariance matrix of the

residuals is a2Iy, with Iy as the identity matrix. Moreover,
assume that an exact asset pricing relation holds with
u= By, where y, is the factor risk premium. Then,

I=¢%Iy+apy, where a=0}/y}. The maximum like-
lihood estimator, 2" and ™, of y and X, are obtained

by maximizing the log-likelihood function over o2, a
and u:

In€=- g InQ2n)— g In(auy’ +o2Iy))
1 T
=5 > Re—pyapp' + 0> Iy~ (Re—p). 29)
t=1

The numerical solution to the optimization problem can
be very demanding due to the number of parameters.
Fortunately, there is available an almost analytical
solution.'?

Let U=2+aj'. Since
In(lapp’ +a%Inl) = (N—1DIn@?) +In(@? +ap'p), (30)
we can minimize
f(n.a,6%) = (N-1)In(c?)+1In(e? +ap'p)
o2 =2 ~apUp

o2+au'u

+ 313 tr(H+ @31
to obtain the ML estimator.

Let Q4Q’ be the spectral decomposition of U, where
A =Diag(1;,...,Ay) are the eigenvalues in descending
order and the columns of Q are the corresponding
eigenvectors. Further, let Z = Qu For any c, 11 >c> iN.
it can be shown that

N 3 52
(Ai—0)Z;
@)= —— =0 32)
i; [1-¢i—o
has a unique solution, which can be trivially found
numerically, in the interval (unuq) with u;=1/(4;—c).
Then, the following objective function:
N 52

N
g©)=1In (c— > ——Z'——~) +(N=1In (E ii—c) ,

11-0©(Ai—0) =
(33)

is well defined, and can be solved easily because it is a
one-dimensional problem. Let c* be the solution, then the
ML estimator of u is

A = i = QUN—P (YA ]2, G4
and hence, the ML estimators of ¢2 and a are
c*—2

N 3 *
&2=2f=1\,’_’11‘"c, a="Fr-1. (35)

Then the MacKinlay and Pastor (2000) portfolio rule is
obtained easily.

12 We are grateful to Raymond Kan for this semi-analytical solution.
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