
Journal of Financial Economics 92 (2009) 519-544

Contents lists available at ScienceDirect

Journal of Financial Economics

journal homepage: www.elsevier.com/locate/jfec

Technical analysis: An asset allocation perspective on the use of
moving averages^"
Yingzi Zhua, Guofu Zhoub'c-*
'School of Economics and Management, Tsinghua University, Beijing 100084, China
b Olin Business School, Washington University in St. Louis, St. Louis, MO 63130, USA
c China Center for Financial Research, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:
Received 17 September 2007
Received in revised form
21 July 2008
Accepted 24 July 2008
Available online 9 March 2009

JEL classification:
Gil
G12
G14
Cll
C61

ABSTRACT

In this paper, we analyze the usefulness of technical analysis, specifically the widely
employed moving average trading rule from an asset allocation perspective. We show
that, when stock returns are predictable, technical analysis adds value to commonly
used allocation rules that invest fixed proportions of wealth in stocks. When uncertainty
exists about predictability, which is likely in practice, the fixed allocation rules
combined with technical analysis can outperform the prior-dependent optimal learning
rule when the prior is not too informative. Moreover, the technical trading rules are
robust to model specification, and they tend to substantially outperform the model-
based optimal trading strategies when the model governing the stock price is uncertain.
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1. Introduction

Technical analysis uses past prices and perhaps other
past statistics to make investment decisions. Proponents
of technical analysis believe that these data contain

important information about future movements of the
stock market. In practice, all major brokerage firms
publish technical commentary on the market and many
of the advisory services are based on technical analysis. In
his interviews with them, Schwager (1993, 1995) finds
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that many top traders and fund managers use it. More-
over, Covel (2005), citing examples of large and successful
hedge funds, advocates the use of technical analysis
exclusively without learning any fundamental informa-
tion on the market.

Academics, however, have long been skeptical about
the usefulness of technical analysis, despite its wide-
spread acceptance and adoption by practitioners.1 There
are perhaps three reasons. The first reason is that no
theoretical basis exists for it, which this paper attempts to
provide. The second reason is that earlier theoretical
studies often assume a random walk model for the stock
price, which completely rules out any profitability from
technical trading. The third reason is that earlier empirical
findings, such as Cowles (1933) and Fama and Blume
(1966), are mixed and inconclusive. Recently, however,
Brock, Lakonishok, and LeBaron (1992), and especially Lo,
Mamaysky. and Wang (2000), find strong evidence of
profitability in technical trading based on more data and
more elaborate strategies. These studies stimulated much
subsequent academic research on technical analysis, but
these later studies focus primarily on the statistical
validity of the earlier results.

Our paper takes a new perspective. We consider the
theoretical rationales for using technical analysis in a
standard asset allocation problem. An investor chooses
how to allocate his wealth optimally between a riskless
asset and a risky one, which we call stock. For tractability,
we focus on the profitability of the simplest and
seemingly the most popular technical trading rule (the
moving average, MA), which suggests that investors buy
the stock when its current price is above its average price
over a given period I.2 The immediate question is what
proportion of wealth the investor should allocate into the
stock when the MA signals so. Previous studies use an all-
or-nothing approach: the investor invests 100% of his
wealth into the stock when the MA says buy and nothing
otherwise. This common and naive use of the MA is not
optimal from an asset allocation perspective because the
optimal amount should be a function of the investor's risk
aversion as well as the degree of predictability of the stock
return. Intuitively, if the investor invests an optimal fixed
proportion of his money into the stock market, say 80%,
when there is no MA signal, he should invest more than
80% when the MA signals a buy and less otherwise. The
100% allocation is clearly unlikely to be optimal. We solve,
for a log-utility investor, the problem of allocating the
optimal amount of stock explicitly, which provides a clear
picture of how the degree of predictability affects the
allocation decision given the log-utility risk tolerance. We
also solve the optimal investment problem both approx-
imate analytically and via simulations in the more general
power-utility case. The results show that the use of the
MA can help increase the investor's utility substantially.

Moreover, given an investment strategy that allocates a
fixed proportion of wealth to the stock, we show that the
MA rule can be used in conjunction with the fixed rule to
yield higher expected utility. In particular, it can improve
the expected utility substantially for the popular fixed
strategy that follows the Markowitz (1952) modern
portfolio theory and the Tobin (1958) two-fund separation
theorem. Because indexing, a strategy of investing in a
well-diversified portfolio of stocks, makes up roughly one-
third of the US stock market, and its trend is on the rise
worldwide (see, e.g., Bhattacharya and Calpin, 2006), and
because popular portfolio optimization strategies (see,
e.g., Litterman, 2003; Meucci, 2005) are also fixed
strategies, any improvement over fixed strategies is of
practical importance, which might be one of the reasons
that technical analysis is widely used.3

However, because the MA, as a simple filter of the
available information on the stock price, disregards any
information on predictive variables, trading strategies
related to the MA must be in general dominated by the
optimal dynamic strategy, which optimally uses all
available information on both the stock price and
predictive variables. An argument in favor of the MA
could be that the optimal dynamic strategy is difficult for
investors at large to implement due to the difficulty of
model identification as well as the cost of collecting and
processing information. It is not easy to find reliable
predictive variables, and their observations at desired
time frequencies are not readily available in real time. This
gives rise to the problem of predictability uncertainty in
practice. In the presence of such uncertainty, Gennotte
(1986), Barberis (2000), and Xia (2001), among others,
show that the optimal dynamic strategy depends on
optimal learning about the unknown parameters of the
model and that, in turn, depends on the investor's prior on
the parameters. In the context of the Xia (2001) model, we
find that, with the use of the MA rule, one can outperform
the optimal dynamic trading strategy when the priors are
reasonable and yet not too informative. This seems due to
the fact that the MA rule is less model dependent, and so
it is more robust to the choice of underlying predictive
variables.

Furthermore, the usefulness of the MA rule is more
apparent when uncertainty exists about which model
truly governs the stock price. In the real world, the true
model is unknown to all investors. But for a wide class of
plausible candidates of the true model, the optimal MA
can be estimated easily, while the optimal trading strategy
relies on a complete specification of the true model. When
the wrong model is used to derive the optimal trading
strategy, we show that the estimated optimal MA outper-
forms it substantially.

In typical applications, one usually chooses some ex
ante value as the lag length of the MA. The question of
using the optimal lag has been done only by trial and
error, and only for the pure MA strategy that takes an

1 Some academics take a strong view against technical analysis. For
example, in his influential book, Malkiel (1981, p. 139) says that,
"technical analysis is anathema to the academic world."

2 As time passes, the average price is always computed based on its
current price and on those in the most recent L periods. Hence, the
average is called the MA.

3 Behaviorial reasons, such as limited attention and optimal learning
with limited resources, could explain the use of simple technical rules in
practice, in addition to the rational reasons explored in this paper.
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all-or-nothing allocation. Because this allocation itself is
suboptimal, the associated optimal lag is suboptimal, too.
The asset allocation perspective provided here not only
solves the optimal stock allocation problem for both the
pure MA and its optimal combination with the fixed rules,
but also determines the optimal lag of the MA. We find
that the fixed rules in conjunction with the MA are fairly
insensitive to the use of the optimal lags, while the
optimal generalized MA (GMA) is not.

The paper is organized as follows. In Section 2, we
provide a literature review of the studies on technical
analysis that are related to the current paper. In Section 3,
we provide mainly our theoretical results. First, we outline
the asset allocation model and investment strategies with
the use of the MA. Second, we solve the optimal strategies
explicitly in the log-utility case and obtain both the
approximately analytical solutions in the power-utility
case. Third, we analyze the strategies when there is either
parameter uncertainty or model uncertainty. Finally, we
explore the optimal choice of the MA lag length. In Section 4,
we provide an empirical illustration on the performance
of the strategies in calibrated models, and we conclude in
Section 5.

2. Literature review

Technical analysis claims the ability to forecast the
future direction of asset prices through the study of past
market data. According to Nison (1991, p. 13), among the
first and famous technicians who use past prices to
predict future price movements is the legendary spec-
ulator Munehisa Homma, who amassed a huge fortune in
the rice market in the 1700s in Japan and whose
techniques evolved into what is known today as the
candlestick patterns. In the United States, the Dow Theory,
developed by Charles Dow and refined by William Peter
Hamilton in the 1800s, asserts that the stock market
moves in certain phases with predictable patterns. While
the classic book by Murphy (1986) summarizes the Dow
Theory and various other technical indicators, a growing
and large literature has emerged on new techniques of
technical analysis due to the wide availability of data and
computing power (see, e.g., Covel, 2005; Kirkpatrick and
Dahlquist, 2006). While technical analysts today could
employ trading rules based, for example, on various price
transformations and other market statistics, such as the
relative strength index, cycles, and momentum oscillators,
the MAs are the most popular and simple rules.

Cowles (1933), who seems to be the first to conduct an
empirical study of technical analysis that is published in
an academic journal, finds that Hamilton's forecasts based
on the Dow Theory over the period of 1904 and 1929 are
successful only 55% of the time. Subsequent studies on
technical analysis are few until in the 1960s, when Fama
and Blume (1966) show that common filter rules are
not profitable based on daily prices of 30 individual
securities in the Dow Jones Industrial Average (DJIA) over
1956-1962. Similar conclusion is also reached by Jensen
and Benington (1970) in their study of relative strength
systems. These empirical findings have perhaps prompted

Fama (1970) to propose the well-known efficient market
hypothesis that market prices reflect all available in-
formation so that no abnormal returns can be made with
historical price and other market data.

The market efficiency was interpreted, in the earlier
years by many, as a random walk model for the stock
price. For any technical trading rule to be profitable, the
stock return must be predictable, and so the use of the
random walk model rules out any value of technical
analysis. However, Lo and MacKinlay (1988) provide a
variance ratio specification test that completely rejects the
random walk model, supporting studies, such as Fama and
Schwert (1977) and Campbell (1987), that various eco-
nomic variables can forecast stock returns due to time-
varying risk premiums. A huge literature is available on
stock predictability, recent examples of which are Person
and Harvey (1991), Lo and MacKinlay (1999). Goyal
and Welch (2003), and Ang and Bekaert (2006). Current
studies, such as Campbell and Thompson (2008).
Cochrane (2008), Rapach, Strauss, and Zhou (2009)
provide further evidence even on out-of-sample predict-
ability. In addition, various asset pricing anomalies, for
which Schwert (2003) provides an excellent survey,
suggest predictable patterns of the stock returns. The
predictability of stock returns allows for the possibility of
profitable technical rules.

Brock, Lakonishok, and LeBaron (1992) provide strong
evidence on the profitability of technical trading. With
robust statistical tests, they find that simple trading rules,
based on the popular MAs and range breakout, outper-
form the market over the 90 year period prior and up to
1987 based on daily data on DJIA. Moreover, in their
comprehensive study of applying both kernel estimators
and automated rules to hundreds of individual stocks, Lo,
Mamaysky, and Wang (2000) find that technical analysis
has added value to the investment process based on their
novel approach comparing the distribution conditional on
technical patterns, such as head-and-shoulders and
double-bottoms, with the unconditional distribution. In
contrast to the equity markets, the results in foreign
exchange markets are generally much stronger. For
example, LeBaron (1999) and Neely (2002), among others,
show that substantial gains are made with the use of MAs
and the gains are much larger than those in the stock
market. Moreover, Gehrig and Menkhoff (2006) argue that
technical analysis today is as important as fundamental
analysis to currency mangers.

Statistically, though, it is difficult to show the true
effectiveness of technical trading rules because of a data-
snooping bias (see, e.g., Lo and MacKinlay, 1990), which
occurs when a set of data is used more than once for the
purpose of inference and model selection. In its simplest
form, rules that are invented and tested by using the same
data set are likely to exaggerate their effectiveness.
Accounting for the data-snooping bias, for example,
Sullivan. Timmermann, and White (1999) show via
bootstrap that the Brock, Lakonishok, and LeBaron results
are much weakened. Using generic algorithms, Allen
and Karjalainen (1999) find little profitability in techni-
cal trading. One could then argue that a bootstrap is
subject to specification bias and that generic algorithms
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can be inadequate due to inefficient ways of learning. In
any case, it appears that the statistical debate on the
effectiveness of technical analysis is unlikely to get settled
soon.

Theoretically, few studies explain why technical ana-
lysis has value under certain conditions. In a two-period
model with third period consumption, Brown and Jen-
nings (1989) show that rational investors can gain from
forming expectations based on historical prices. In an
equilibrium model in which the volume also plays a role,
Bluine, Easley, and O'Hara (1994) show that traders who
use information contained in market statistics do better
than traders who do not. In a model of information
asymmetry, Grundy and Kim (2002) also find value of
using technical analysis.4 However, to our knowledge,
no theoretical studies are closely tied to the conventional
use of technical analysis, and no studies calibrate the
model to data to provide insights on the realistic use
of technical analysis in practice. The exploratory study
here attempts to fill this gap of the literature. In so
doing, we study the classic asset allocation problem
and examine how technical analysis, especially the MA,
can be optimally used to add value to the investment
process.

3. The model and analytic results

In this section, we present the model and analytical
results for various cases. To focus on ideas and intuition,
we motivate the framework and only explain the main
results, while leaving the derivations of all major formulas
and propositions to Appendix A.

3.1. The model and investment strategies

For simplicity, we consider a two-asset economy in
which a riskless bond pays a constant rate of interest r,
and a risky stock represents the aggregate equity market.
Because of the ample evidence on the predictability of
stock returns5 we follow Kim and Omberg (1996) and
Huang and Liu (2007), among others, and assume the
following dynamics for the cum-dividend stock price S(:

and

(1)

(2)

where /i0,/j,,<Ts,f)o,0i, and ax are parameters; Xt is a
predictive variable; and Bt and Zt are standard Brownian
motions with correlation coefficient p; 0i has to be
negative to make X, a mean-reverting process. The model
is a special case of the general model of Merton (1992). In

4 In addition, behavioral models, such as those reviewed by Shleifer
(2000) and Shefrin (2008), offer support to technical analysis by
theorizing certain predictable patterns of the market.

5 Kandel and Stambaugh (1996), Barberis (2000), and Huang and Liu
(2007) are examples of studies on portfolio choice under predictability.

discrete-time, it is the well-known predictive regression
model (e.g., Stambaugh. 1999).

Given an initial wealth Wo and an investment horizon
T, the standard allocation problem of an investor is to
choose a portfolio strategy £t to maximize his expected
utility of wealth,

maxE[u(WT>], (3)

subject to the budget constraint

- = rdt + £,(£,<rs dBt.(4)

The solution to this problem is the optimal trading
strategy. In general, this strategy is a function of time
and the associated state variables. We refer to it as the
optimal dynamic strategy, because it varies with time and
states.

In this paper, we assume the power-utility

u(Wr) = -(5)

where y is the investor's risk-aversion parameter. In this
case, the optimal dynamic strategy is known (see, e.g.,
Kim and Omberg, 1996; Huang and Liu, 2007) and is
given by

(6)

where #(t) and £(t) satisfy the following ordinary
differential equations:

= 0

and

with

a, =(i - y)2

Q5 =

(7)

(8)

(9)

(10)

(11)

(12)

(13)

and the terminal conditions x(T) = f(7") = 0.
The assumption that stock returns are independently

and identically distributed (iid) over time has played a
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major role in finance. It was the basis for much of the
earlier market efficiency arguments, although it was
known later as only a sufficient condition. Nevertheless,
some of the most popular investment strategies and
theoretical models are based on this assumption. Under
the iid assumption, the optimal strategy is

yaf
(14)

where ns is the long-term mean of the stock return. This
strategy invests a fixed or constant proportion of wealth,
£fixl, into the stock all the time. In discrete-time, this is the
familiar suggestion of the Markowitz (1952) mean-
variance framework and the Tobin (1958) two-fund
separation theorem.6 The strategy is one of the most
important benchmark models used in practice today (see,
e.g., Litterman, 2003; Meucci, 2005). Because of it, passive
index investments have become increasingly popular
(Rubinstein, 2002). Theoretically, the allocation rule
ignores any time-varying investment opportunities and
is clearly not optimal once the iid assumption is violated.
A likely practical motivation for its wide use is as follows.
Although stock returns are predictable, the predictability
is small and uncertain. It could be costly for a small
investor to collect news and reports about Xt whose costs
could outweigh the benefits. As a result, the investor could
simply follow a fixed rule even though there is a small
degree of predictability.

The fixed rule <^xl ignores any predictability comple-
tely. An interesting question is, then, whether one can
obtain yet another fixed rule that accounts for the
predictability. In other words, how should the investor
invest his money when he knows the true predictive
process but not the state variables? Mathematically, this
amounts to solving the optimal allocation problem by
restricting <j;t to a constant. The solution is analytically
obtained as

f fix2 =;

where

X\ ̂-

and

0,7

(15)

(16)

(17)

For y = 1, this optimal constant strategy is equal to ̂x]. In
other words, for investors with log-utility, the optimal
fixed strategy remains the same as before, even though
the stock returns are predictable, a fact we can explain
largely by the myopic behavior dictated by the log-utility
function. For y > 1, however, there is an adjustment in the

denominator of Eq. (15). In general, the adjustment can be
either positive or negative.

Let L>0 be the lag or lookback period. A continuous-
time version of the MA of the stock price at any time t is
defined as

..-J/s. LJ,-i
du.(18)

i.e., the average price over time period [t - L, t}. The
simplest MA trading rule is the following stock allocation
strategy:

"{
1 ifSt>>»f,
0 otherwise.

(19)

This is well defined when t>L and can be taken as zero or
as another fixed constant when t^L7 This standard (pure)
MA rule is a market timing strategy that shifts invest-
ments between cash and stock. Almost all existing studies
on the MA strategy take a 100% position in stock or
nothing, i.e., the portfolio weight (on the stock) is r)t. This
is clearly not optimal for two reasons. First, the MA rule
should in general be a function of the risk-aversion
parameter y. Intuitively, y reflects the investor's tolerance
to stock risk, and it has to enter the allocation decision as
is the case for the earlier optimal fixed strategies. Second,
the degree of predictability must matter. The more
predictable the stock, the more reliable the MA rule and
hence the more allocation to the stock.

Other than the pure MA rule, we also consider the
following GMA rule.

GMA(S,,At,y) =(20)

where £fix and £mv are constants. This trading strategy is a
linear combination of a fixed strategy and a pure MA
strategy. It consists of all the previous strategies as special
cases. For example, ^X1 is obtained by setting £,r,x = ^lx1

and £mv = 0, and r\ is obtained by setting £nx = 0 and
smv = * •

Three interesting questions are associated with the
GMA rule. First, what is the optimal choice of £fix and £mv,
and how well does it perform compared with other fixed
strategies? Second, with ^nx being equal to either £flxl or
^X2, is the optimal choice of £mv zero or not? This
indicates whether there is a gain in the expected utility
when the fixed strategy is used in conjunction with the
MA rule. Third, imposing £fjx = 0, what is the optimal
choice of £mv? This indicates the optimal amount of
investment based purely on the MA trading signal. If
£mv = i, the usual application of the MA with 100% stock
allocation is optimal. However, as easily seen from our
analysis below, the optimal value of £mv is unlikely to be
equal to one. These three questions are answered first
analytically for the log-utility and then approximately
analytically for the power-utility.

Analytically, the distribution of the arithmetic MA At is
very complex and difficult to analyze. However, the

6 See Ingersoll (1987) or Back (2006) for an excellent textbook
exposition.

7 In practice, the MA rule is computed based on ex-dividend prices,
whose impact is analyzed in Section 4. Its starting time also needs be
specified, which is discussed in Appendix A.
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geometric MA,

G,
/I rt

= exp T /
V.1- Jt-L

log(S,,)du(21)

is tractable to allow explicit solutions. In addition, as
shown in our simulations, little performance differences
emerge in our main results with the use of either
averages. Henceforth, we focus our analysis on
GMA(St,G,,y). i.e., the GMA strategy based on the
geometric average.

3.2. Explicit solutions under log-utility

In this subsection, we provide the explicit solutions to
the optimal GMA strategies and compare them analyti-
cally with both the optimal fixed and the optimal dynamic
allocations.

The wealth process corresponding to the GMA is

dWt

Wt
= [r + GMA •- r)] dt + GMA - as dBt (22)

and. hence, assuming T>L, we have

logWr = logWo + rT

(ft,

fT fT r
/ dtXtnt + dt\

Ji J L L
- r)

(23)

where Xt =Xt-X with X = -00/6i. Assume that X, is
stationary, and it starts from its steady state distribution.8
Then, the expected log-utility is

t/GMA = E log WT = log W0 + rT +

- r -

To solve the optimization problem, let

and

(24)

(25)

(26)

8 Our goal here is to find the unconditionally optimal GMA rule. In
other words, we solve in what follows the optimal allocation problem
using the steady state distribution for X0. See, e.g., Karatzas and Shreve,
1991, p. 358, for a general discussion on the steady state.

where b, is the covariance between X, and the MA
strategy nc and b2 is the probability of Sr>Gt at any given
time. It can be shown that

(27)

(28)

(29)

(30)

(31)

and N(-) and N'(-) are the distribution and density
functions of the standard normal random variable,
respectively. Because Xt starts from its steady state
distribution, ft, and b2 are independent of time t. There-
fore, the expected log-utility of Eq. (24) becomes

L/GMA = E log WT = log W0 + rT+

- r)

b2(T - L).(32)

With these preparations, we are ready to answer the three
questions raised earlier. In doing so, we assume that the
investment horizon T is greater than or equal to the lag
length L throughout. This assumption is clearly harmless.

3.2.7. Optimal GMA
On the question of finding the GMA strategy that

combines a fixed rule with the MA. the results are given
by Proposition 1.

Proposition 1. Jn the class of strategies GMA(St,Gr,y), the
optimal choice of ^fix and £mv under the log-utility is

(33)

(34)
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and the associated value function is

(35)

where L/nx] is the value function associated with

Proposition 1 says that the improvement over ^xi is
always positive by combining a suitable fixed strategy
with the MA one unless /*, = 0. In the case of u^ = 0, the
stock return is unpredictable, and the fixed strategy ̂xl is
optimal already. The point is that £fixl is not optimal in
general, and so the MA rule can help to gain in expected
utility with the combination of another fixed strategy. In
the log-utility case, ^X2 = £fiX,. Hence, Proposition 1
applies to £|jx2 as well, and £fix1 is the only fixed strategy
to compare with.

It is interesting to observe that

«x + (fcO = «xi- (36)
If the predictive variable Xt is positively related to the
stock market with ^, > 0 and p > 0, the investor invests
less than the standard fixed strategy by the amount of
b2£mv because 0<b2 < 1 and <,̂v >0. Once the trend is up,
as suggested by the MA rule, the investor is more
aggressive than the fixed strategy by investing an extra
amount of (1 - £>2)£mv This is consistent with the
intuition that one should take advantage of the predict-
ability of the stock market once it is detected by the MA
rule.

If one strategy outperforms another over horizon T, it
must continue to do so over a longer time. Hence, LTGMM -
UflXl must be an increasing function of T. What is striking
here is that this relation is in fact linear in T in the log-
utility case, because b\ b2, /j,, and as are all horizon-
independent parameters.

Proposition 1 also makes possible an analytical
comparison between GMA1 and the optimal dynamic
strategy. Under the log-utility, the optimal dynamic rule of
Eq. (6) is the same as the myopic rule

(37)

By substituting this optimal rule into the wealth process,
we obtain the optimal utility

(38)

Based on the value functions in both cases, we have

(39)

Recalling that b\ EXtrj and i>2 = Ety, we have
varty) = Erj2 — (Etj)2 = b2(\ b2), and hence

(cov(Xt,??))2

b2(1 - b2) varty)varty)

. E(Xt)varty)
: varty)

(40)

Therefore, the right-hand side of Eq. (39) is always
positive, as it must be, because U*pt is the expected utility

under the optimal dynamic strategy. It is seen that
the smaller the G\, the smaller the difference. In
other words, the less volatile the predictive variable, the
closer the GMA1 to the optimal strategy. However, it
should also be noted that, as a\s smaller, b\o gets
closer to zero, i.e., the MA component becomes smaller,
too.

3.2.2. Combining a fixed rule with MA
Now we consider whether the MA strategy can be used

in conjunction with ^x] to add value. To address this
issue, we need to solve the earlier optimization by
imposing the constraint that £nx = ^Xl. In this case, we
present Proposition 2.

Proposition 2. m the class of strategies GMA(St, G,, y) with
£fix being set at £fjxi, the optimal choice o/^mv under the fog-
uti/ity is

.. 1.

(41)

and the associated value function is

where UJjx1 is the value function associated with £

(42)

As for l/GMAii 1/GMA2 is at least as 'afge as ^fixi- When
there is predictability, UCMA2 is clearly strictly larger than
Ujjxl, implying that the MA rule helps to improve the
expected utility and does so strictly as long as the stock
return is predictable.

An interesting observation is that £JJ,V in Proposition 2
differs from that in Proposition 1 by only a factor of 1 - b2

in the denominator. Because 0 < b2 < 1 , £'mv is smaller now
in absolute value. This is expected. Because dfj^ is set at
£fixl, the risk exposure to the stock market is relatively
higher already as ^J|xl > £,'rfx. Hence, when the MA rule
detects an upward trend in the market, the investor acts
more aggressively than ^x], but less aggressively than
before. Finally, it is seen that

(T "
(43)

While the second inequality is obvious, the first inequality
should be true, too. The fixed component of GMA1 is
optimally chosen, and hence its performance must be
better than the GMA strategy with that component set at

3.2.3. Optimal pure MA
A standard or pure MA rule is a market timing strategy

that shifts money between cash and risky assets. Existing
studies provide no guidance as to how much one should
optimally invest in the stock even if one believes it is in an
up-trend as signaled by the MA rule. Clearly, a 100%
investment in the stock market is not optimal from a
utility maximization point of view. Here we solve the
optimal amount explicitly.

Proposition 3. In the class of strategies GMA(St,Gt,y)
with restriction £fix = 0, the optimal choice of £mv under
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the log-utility is

and the associated value function is

(us - r)b2)2 - (us - r)2b2

(44)

(T-L), (45)

which can be either greater or smaller than L/J|x1, the value
function associated with ^xl.

Consistent with our intuitive reasoning in the Introduc-
tion, Proposition 3 says that, if an all-or-nothing invest-
ment strategy is taken based on the MA, the optimal stock
allocation is unlikely to be 100%. Recognizing that 100% is
not optimal, one could suggest a two-step approach for
making use of the MA signal. In the first step, one
determines the stock allocation, say £f,x], based on a
standard fixed allocation model and then, in the second
step, apply this in the market-timing decision: invest that
amount into the stock if MA signals a buy. and nothing
otherwise. Eq. (44) says that this fixed amount differs
from £,*mv in general, and hence the decision is suboptimal,
too. The intuition is that one should invest more than that
fixed amount if an up trend is detected, and less if there is
a down trend.

Proposition 3 also says that whether or not the pure
MA strategy can outperform the fixed strategy depends on
particular parameter values. It can be verified that if

us-r<(46)

the relation about the risk premium, is satisfied, then the
pure MA strategy does yield a higher expected utility than
the fixed strategy £r,x,.9 However, with reasonable para-
meters calibrated from data, this condition is not satisfied.
It implies that the optimal pure MA strategy usually
performs worse than the simple fixed strategy. Our later
simulations show that, the pure MA strategy and its
common analogues always perform the worst. Hence, if
the MA rule is to be of any value to investors, it must be
used wisely and in conjunction with the fixed strategies
demonstrated by Propositions 1 and 2.

3.3. Analytic solutions under power-utility

In this subsection, we extend our earlier analysis to the
power-utility case. First, we provide first-order accurate
analytical solutions to the fixed strategies combined
optimally with the MA. The analytical solutions provide
insight on the role played by an investor's risk aversion.
Second, we derive second-order accurate analytical solu-

9 To appreciate the intuition behind the condition, we note that the
denominator of the right-hand side of the inequality is dominated by
0.25. Therefore, a sufficient condition for pure MA strategy to outperform
a fixed rule is ft^bi >4(fis - r), which means that, when predictability is
stronger, the MA strategy is more likely to dominate the fixed rule.
Similarly, if the equity premium is not too large, the MA strategy is more
likely to dominate.

tions to the strategies that are important for computing
their performance under the power-utility.

3.3.7. First-order approximate solutions
In the power-utility case, the complexity of the utility

function precludes us from deriving exact analytical
solutions to those trading strategies examined earlier.
Nevertheless, we can obtain first-order analytical approx-
imations. The solutions reveal how the trading strategies
are affected by y, the investor's risk aversion.

By approximating jj Xtdt, £ Xtrjtdt and fgt]tdt with
their mean values, we can write the expected utility under
the GMA as

GMA(}0 :

(W0exP(rr))

• exp

1-y

|(l -

+

- r) -

+ /I,X - f)

(47)

Optimizing this approximated utility function, we obtain

GMA(St, Gt, y) = - GMA(St, Gt,(48)

This says that the optimal GMA rules in the y^l case is
simply a scale of those in the log-utility case. Hence, much
of the qualitative results obtained in the log-utility case
carry over to the power-utility case, with accuracy up to
the first-order approximation.

For example, the GMA1 strategy in the power-utility
case is still of the earlier form, but with

ycr?

and

' yb2(l -

(49)

(50)

This says that we simply scale down the stock investment
by 1 /y when the investor is more risk-averse than the log-
utility case. The same conclusion also holds for other
strategies. This scaling corresponds precisely to the way
by which the usual fixed strategy is adjusted when the
investor's preference changes from the log- to the power-
utility. In particular, the optimal pure MA rule depends on y.
However, one should keep in mind that the simple inverse
dependence on y here is not exact, but only approximate
with first-order accuracy.

3.3.2. Second-order approximate solutions
While the previous approximate solutions make

apparent the role of y, they are not accurate enough in
simulations for measuring the true performance of the
optimal GMA strategies, which are analytically unavail-
able. One could propose a numerical method, such as
simulation, to compute the optimal GMA strategies, but
this is feasible only for a given St, Gt, and t. To evaluate the
performance of these strategies, however, we need to
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compute the optimal GMA strategies at hundreds and
thousands of draws of St and Gt and time t. Therefore, due
to the curse of dimensionality, it is not possible to
evaluate the performance of the optimal GMA strategies
numerically without efficiently determining the strategies
in the first place. To resolve this problem, we now derive
alternative analytical solutions to the strategies. These are
more complex than the earlier ones but are accurate to the
second-order. As a compromise, they are taken as the true
strategies. Simulations are used to evaluate their perfor-
mances.

Instead of ignoring the second-order terms of the
random variables in Eq. (23), we approximate them by a
Gaussian process that match both the first and second
moments. Then, the power-utility.

y)var(CT + DT

1-y

can be approximated by

(51)

exp(l -

, (52)

where Ur,x(£f,x) is the value function associated with a
given fixed strategy {flx.

= 0«0 + frX - r) -

and

ti
JO '

rT
r = ffs ritdBt.

Jo

ft
•= / ritdt.

Jo

1 Jo

• = as / dBt.
Jo

(53)

(54)

(55)

(56)

(57)

(58)

Upon some further algebraic manipulation, we obtain the
power-utility value function as

(59)

where

00 = ECT

+ 0 -
- r - <

-, CT + DT

+ 0 -

(1 - y)cov(CT + DT

- r -

(61)

(62)

and

(63)

Hence, for any given £fix, we can solve the associated i
which maximizes t/(y), Eq. (59), as

]
l/3

-1/3

where

303 3V3037
and

00 2 000,02 2 /202\
30 27 + 2

(64)

(65)

(66)

(60)

If £nx = ^nxi or ^fix2 or °- we obtain the corresponding
£*mv from Eq. (64) that yields the approximate optimal
GMA strategies. For easier reference, we denote them as
Fixl+MA, Fix2+MA, and PureMA, respectively. These three
together with ^x] and i^, denoted as Fixl and Fix2,
consist of five strategies whose performances are exam-
ined in detail in Section 4.

Finally, we note two interesting cases in which our
analysis can be extended to allow intermediate consump-
tion. The first is to assume a complete market under the
current power-utility. Based on Wachter (2002) and Liu
(2007), the indirect utility with intermediate consump-
tion is a weighted average of the indirect utility with
terminal wealth only, and hence the portfolio policy is
similar. However, because the complete market assumes a
perfect correlation between the stock return and the
predictive variable, which is unrealistic in our context, we
omit the analysis here. The second case is to use the
Epstein, Zin, and Weil or recursive utility, i.e., the
stochastic differential utility in continuous-time. When
the coefficient of the elasticity of intertemporal substitu-
tion is one, the consumption is a constant ratio of wealth,
and hence the portfolio policy is the same with or without
consumption. When the risk-aversion coefficient is one,
the portfolio policy consists of the myopic one only, and
consumption does not affect portfolio choice. Under
the later condition, as shown by Campbell and Viceira
(1999). the consumption affects the portfolio policy only
through the hedging demand, which is proportional to
the covariance between the predictive variable and the
consumption-wealth ratio. Under both conditions, the
optimal portfolio with the GMA remains the same,
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although the utility losses could be bigger due to early
consumption.

3.4. Solutions under parameter uncertainty

In previous subsections, we follow the common
assumption that an economic agent making an optimal
financial decision knows the true parameters of the
model. However, the decision maker rarely, if ever, knows
the true parameters. In reality, model parameters
have to be estimated, and different parameter estimates
could provide entirely different results. This gives rise
to the estimation risk associated with any trading
strategy. In this subsection, we analyze the performance
of various investment strategies under such parameter
uncertainty.

One remarkable feature of the pure MA rule is that it is
entirely parameter- and model-free, and hence it is not
subject to estimation risk given an ex ante allocation to
the stock. Hence, it is not surprising that the optimal GMA
rule discussed below is robust to parameter uncertainty
and does not require any prior estimate of the predictive
parameter. In contrast, the performances of the optimal
dynamic rules depend on the accuracy of the estimates of
the true parameters, which in turn depends not only on
the sample size, but also on the prior.

In a continuous-time model, under fairly general
conditions, one can separate the estimation from the
optimization problem (see, e.g., Gennotte, 1986), and
parameter uncertainty affects the optimal portfolio choice
through dynamic learning. Barberis (2000) and Xia
(2001), among others, show that this dynamic learning
effect changes the myopic portfolio holding and adds a
new component to dynamic hedging arising from the
parameter uncertainty. For tractability, we follow the Xia
approach to model uncertainty about predictability to
examine the usefulness of the GMA rule. In this case, the
stock price dynamics can be re-parameterized as

= (u0 + /i,X + 0Xt) dt + ffs dBc,(67)

Zt. (68)

where /? is an unknown parameter to be inferred from the
data. Uncertainty associated with ft obviously measures
an investor's uncertainty about predictability. All other
parameters are assumed known. In particular, the long-
term mean stock return, u0 + /i,X, is known, where
X = —00/01 is the long-term mean of Xt. Assume ft follows
a diffusion process

d^ltfi-fidt + apdZf. (69)

where the parameters of this process, i.e., the long-term
mean /? and reversion speed A, are known to investors.
But the investor does not observe the innovation
process zf directly and has to infer the realization of /?
through observations on St and Xt. To complete the
model, assume E(dBt dzf) = pfs dt, E(dZ, dzf) = pftx dt,
and E(dBcdZ[) = pdt.

Let ,/r be the investor's filtration. Adapted to .ft, the
least square estimate of /? is Gaussian, with mean and

variance

and

(70)

b,)Vt]. (71)
Starting from a Gaussian prior for /8 with mean bo and
variance VQ. the Bayesian updating rule for the conditional
mean and variance, bt and vr, are (see, Xia, 2001 )

dbt = /l(b — bt) dt + Vi dBt

^ = -2Avt + ffj - (v2 +

where

vt(X, -
- 2P2)

1/2 =--vt(Xt-;
gs(l-p2)

(72)

(73)

(74)

(75)

(76)

(77)

and

dZt = dZt. (78)

To further simplify the problem, we assume log-utility. In
this case, the optimal dynamic stock allocation can be
solved analytically,

£^. (79)

Hence, the optimal log-utility level is

= j£ E |r + £*p

log W0.(80)

This value function can be computed easily via simulation.
In particular, the optimal fixed rule in the parameter

uncertainty case, under the log-utility, can be explicitly
obtained as

where

(81)

rR7, (82)

Intuitively, CT captures the covariance between the
predictability parameter ft and state variable Xt.

For applications later, we summarize the three strate-
gies in our parameter uncertainty setting.

1. The optimal dynamic learning rule £*pt as given by
Eq. (79).

2. The optimal fixed strategy ̂ as given by Eq. (81).
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3. The GMA rule, a combination of
coefficients

b2(l - b2)<r2

and

Cmv —b2(l-b2)<r2>

and the MA, with

(83)

(84)

= E[i/t(Rr-r)]tfc.
> Jo

where bi and b2 are defined similarly in Eqs. (27) and
(28) with the unknown /x, now replaced by the long-
term mean p.

The fixed and GMA rules are denoted as Fixl and
Fixl + MA, respectively, because they are the correspond-
ing strategies of the complete information case.

3.5. Solutions under model uncertainty

In this subsection, we consider further the case in
which the true model is not completely known to
investors. Previously, knowledgable investors could obtain
their optimal trading strategies based on their assumed
true model, but now the true model is unknown both to
these smart investors and to the technical traders. To
examine how well the GMA strategy performs in this
seemingly realistic case, given that no one knows the
exact model of stock prices, we need first to provide a way
for constructing the optimal GMA. We have solved the
optimal GMA strategy in terms of the true parameters of
the model, but this is not absolutely necessary. We show
now that the optimal GMA strategy can be estimated with
much less model dependence. In other words, the strategy
is robust to a wide class of model specifications. To see
this, assume now that we have a very general stock price
process

-^ = Rtdt + ffdB,, (85)

where Rt is the instantaneous expected stock return that
can be stochastic. For simplicity, a is assumed, as before,
as the constant volatility parameter. Then the log wealth
process of the GMA strategy is

rr
log WT = log W0 + rT + / (£fix + Zmvt]t)(Rt - r) dt

Jo

+ I (£fix + £mv>7r)tf dBt
Jo
1 rT

~4 / (£flx + £mv'7t)20'2 dt- (86)
* Jo

Hence, the expected utility becomes

(87)

(88)

= log W0

where

= Wt-r]dt,
' Jo

(89)

(90)

(91)

(92)

The parameters defined in Eqs. (88)-(90) can be written in
terms of moments.

and

Optimizing the expected utility, we obtain

£fix ~~02 ~k2£mv

and

b0 = E[RC] - r,

b, = E[titRt] - rb2,

and

b2 = E[rjt].

(93)

(94)

(95)

Thus, assuming stationarity as before, we can estimate
them by their sample analogues. For example, to see how
bn can be estimated, we write

,

RtAt = =?• - a ABt.
it

With the law of iterative expectation, we have

b, = E[,/,Et(Rr - r)] = E \r\, (j± - r)] ,

(96)

(97)

which can be estimated by using the corresponding
sample average of the right-hand side.

Now we are ready to define the estimated optimal
GMA strategy as follows (which differs from the optimal
GMA that solves from a given specification of the true
model). At any time t, we use the available sample
moments up to that time to estimate the parameters given
by Eqs. (93)-(95). Substituting the estimates into Eqs. (91 )
and (92), we obtain the estimated optimal GMA strategy
£fix + Imfr Because the estimates £fix and ~£mv vary over
time according to the moment estimates at time t and do
not depend on future information, the strategy is a
feasible rolling strategy. No knowledge of the true model
is needed other than the general form of Eq. (85). The
GMA strategy, denoted later as Fixl + MA, is robust to
model specifications and outperforms the optimal trading
strategies substantially when they are derived from the
wrong models.

3.6. Optimal lags

So far, we have studied the various GMA strategies
with a fixed lag. In this subsection, we ask how the lag can
be optimized. We study this problem under the log-utility
with the aid of the analytical solutions of Section 3.2.
However, the optimal lag itself does not admit an explicit
solution but can be solved approximately in closed form
that provides qualitative insights on the driving factors.
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Unlike the previous two subsections, we assume here as
usual that the investor knows all the true parameters of
the model to simplify the analysis.

To study the determinants of the optimal lag, we restrict
parameter values to those of practical interest by assuming

(98)

This is because ax is much smaller relative to a3, and because
the correlation p is close to zero. This relation holds for all
three calibrated models provided later. Using the unit-free
variable x = <J\Oi \L, we can approximate Eqs. (29}-(31) by

C, 1-
1 -e-"

where

c Wl
Cl=-2^~-

o?
3|0,|'

and

_ft
3"

(99)

(100)

(101)

(102)

(103)

(104)
2|0il '

Therefore, Eqs. (27) and (28) can be approximated by

•/(A*) = C4h(x)f(Ax), (105) fci*C4.y 1-

b2 « N(Ax),

where

v^'

(106)

(107)

(108)

(109)

and /(•) is the standard normal density function. Then, we
are ready to present Proposition 4.

Proposition 4. In the class of strategies GMA(St, Gt, y), if the
investment horizon T is long enough, then the optimal lag
Lopt under the log-utility is approximately given by

(110)

where At = A/V2 and A for the PureMA and Fixl 4- MA
strategies, respectively.

Proposition 4 says that optimal lag is mainly a function
of the unconditional mean return fis, stock volatility as,
and state variable mean reversion speed 10-H given that
T is large. Because ns and as are stable across different
models, Lopt is mainly driven by differences in 61.

Finally, consider the optimal lag for the pure MA
strategy. Intuitively, given a lag length, the initial value of
the MA matters little when T is large. However, given T,
the initial value matters significantly in choosing L. This is
because L can be chosen as T. Because the pure MA under-
performs ^x] under the practical parameter values, it is
optimal to let L = T. In this case, the pure MA is identical
to Fixl because the initial value is chosen as ^1X1. An
alternative initial value for the pure MA is zero. In this
case, it can be shown that

(in)

when |0i |T is large. This makes intuitive sense. The larger
the speed of mean reversion, the shorter the lag length to
capture the change of trends.

4. An empirical illustration

To get further insights into the practical importance of
technical analysis, we, in this section, calibrate the model
from real data and compare the performance of various
trading strategies in three cases. In the first case, with
power-utility and with complete information, we examine
the performance of the two fixed strategies and their
combinations with the MA, Fixl, Fix2. Fixl + MA,
Fix2 + MA, and PureMA, relative to the performance of
the dynamic optimal strategy. To make the comparison
comprehensive, we also include three ad hoc MA
strategies, MAI, MA2, and MA3, with stock allocations of
100%, Fixl and Fix2, respectively, when the MA indicates a
buy signal, and nothing otherwise. In addition, we consi-
der the linear strategy of Ai't-Sahalia and Brandt (2001)
and Brandt and Santa-Clara (2006).10 In the second case,
under parameter uncertainty, we consider the log-utility
and examine the relative performance of Fixl and Fixl +
MA only. This is because Fix2 reduces to Fixl and Fix2+MA
reduces to Fixl + MA, and because the remaining strate-
gies, the ad hoc MAs and the linear, do not perform well
and hence are omitted. In the third case, under model
uncertainty, we examine only the estimated Fixl and
Fixl 4- MA because they are unknown and have to be
estimated from available realizations. For clarity. Table 1
summarizes the cases and the strategies used in the
comparisons.

The data used in the calibration below are the monthly
returns from December 1926 to December 2004 on
Standard and Poor's 500 and monthly observations on
three popular variables, the dividend yield, term-spread
and payout ratio, which are used, respectively, as the

10 See Section A.6 of Appendix A for more discussion and for the
implementation details.
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Table 1
List of various portfolio strategies and their comparisons.

The table lists all the strategies to be compared with the optimal
dynamic strategy in three cases for the predictive model of the stock
price: complete information, parameter uncertainty, and model un-
certainty. There are nine strategies in the first case and two strategies in
other two cases. The strategy Fix1 is the standard fixed allocation rule
that invests a fixed proportion of wealth, determined by the uncondi-
tional moments of the model, into the stock, and Fix2 is also a fixed rule
but accounting for stock predictability. The strategies Fixl + MA and
Fix2 + MA are those that are optimally combined with the MA. PureMA
is the strategy that uses the MA optimally to time the stock without any
combination with the fixed rules. MAI, MA2, and MA3 are ad hoc MA
only strategies whose stock allocations are 100%, Fix1, and Fix2,
respectively, when the MA indicates a buy signal (i.e., current stock
price is above MA) and nothing otherwise. The final strategy, the linear
rule, is the approximate linear portfolio policy of Brandt and Santa-Clara
(2006).

Case 1
(complete information)

Case 2
(parameter uncertainty)

Case3
(model uncertainty)

Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA
MAI
MA2
MA3
Linear rule

Fixl

Fixl + MA

Fixl

Fixl + MA

predictive variable in the model.11 With the calibrated
model and with setting y = 2 and r = 5%, we are ready to
compute all the quantities of interest via simulations
based on our analytical results in Section 3. We report
below primarily the certainty-equivalent (CE) losses of the
strategies as compared with the optimal dynamic one,
which are easier to interpret than the utility values.

The CE losses are computed as follows. Normalizing
the initial wealth at the level of $100, W0 = 100. Let
l/*pt(Wo) be the expected utility based on the optimal
dynamic strategy and L/;(W0) be the expected utility
based on any of the suboptimal trading strategies, say a
fixed strategy. Because L/;pt(W0)^L/jf(Wo). there exists
CEssO such that

L/*pt(W0 - CE) = U;(W0).(112)

CE can be interpreted as the perceived certainty-equivalent
loss at time zero to an investor who switches the optimal
strategy to the suboptimal one. In other words, the
investor would be willing to give up CE percent of his
initial wealth to avoid investing in the suboptimal strategy.
Similar measures are used by Kandel and Stambaugh
(1996), Pastor and Stambaugh (2000), Fleming, Kirby, and
Ostdiek (2001), and Tu and Zhou (2004), among others. For
simplicity, we refer to the CE as utility gains or losses in
what follows.

11 See, e.g., Goyal and Welch (2003) for a detailed description of the
predictive variables, which are available from Goyal's website.

Table 2
Calibrated model parameters.

The table reports parameter estimates for the following cum-dividend
price process:

dX, = (00 + #i W dt + ffxd2,,

where ^0,fi,,as,6a,6t. and a, are parameters, X, is a predictive variable,
and B, and Z, are standard Brownian motions with correlation coefficient p.
The estimation is based on monthly returns on the Standard and Poor 500
from December 1926 to December 2004 and on X,, which is the dividend
yield, term-spread, and payout ratio, respectively, in the corresponding
time period.

ParametersDividend yieldTerm-spreadPayout ratio

/<0

Al
Os

60
01
a*
P

0.031
2.072
0.195
0.010

-0.253
0.012
-0.073

0.097
1.206
0.195
0.009
-0.527
0.013
0.001

0.282
-0.292
0.194
0.014
-0.027
0.050
-0.003

4.1. Comparison under complete information

For the empirical results, we first report in Table 2 the
calibrated parameters (whose estimation details are
provided in Section A.5 of Appendix A). As expected, the
stock volatility estimates are virtually the same as as =
0.195 across the three predictive models. The same is true
for the long-term mean of the stock return (not shown in
the table). However, both the volatility of the predictive
variable and its correlation with the stock return do vary
across the models, making the comparison of the
strategies more interesting.

Tables 3 and 4 report the CE losses in percentage points
when L = 50 and 200 days, respectively.12 The lag lengths
are those used by Brock, Lakonishok, and LeBaron (1992),
of which L = 200 is also the lag length of the popular MA
chart published by Investor's Business Daily, the major
competitor of the Wall Street Journal. There are several
interesting facts. First, the losses are substantial across all
the strategies relative to the optimal dynamic one, and
they vary substantially, too, across predictive models.
When the predictive variable is taken as the dividend
yield, the losses (ignoring the ad hoc MA and linear
strategies, which are dropped later for reasons below)
vary from 7.895% to 50.356%. The range widens, from
18.061% to 59.359%, when the payout ratio is taken as the
predictive variable. However, it narrows down to a low of
1.550% and a high of 42.910% when the term-spread is
taken as the predictive variable. The large losses suggest
strongly that, in an asset allocation problem, it is very
important to know both the true dynamics of stock
returns and the associated optimal dynamic strategy. This
could help explain why Wall Street firms spend enormous
amounts of money collecting data and doing research.
Kandel and Stambaugh (1996) show that the economic
loss can be significant when one ignores predictability

12 The results when L = 100 are similar and omitted for brevity.
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Table 3
Utility losses versus optimal strategy (L = 50).

The table reports the utility losses, measured as percentage points of
initial wealth, that one is willing to give up to switch from a given
strategy to the optimal dynamic one in the complete information model
when the moving average (MA) lag length L is set equal to 50 days.

Strategy

T=10
Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MAI
MA2
MA3
Linear rule

T = 20
Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MAI
MA2
MA3
Linear rule

7 = 40
Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MAI
MA2
MA3
Linear rule

Dividend yield

8.845
7.904
8.177
7.895
16.303
17.762
17.234
16.863
14.801

16.680
15.171
15.344
15.161
29.326
31.572
30.694
30.040
33.409

30.369
28.027
27.907
27.985
50.356
53.684
51.972
51.136
61.541

Term-spread

3.895
1.568
2.615
1.550

13.088
14.037
14.423
13.614
13.702

7.609
3.112
4.648
3.059
23.931
25.652
26.254
24.874
30.891

14.613
6.129
7.949
5.880
42.910
45.284
45.561
43.758
58.711

Payout ratio

20.856
18.061
18.639
18.061
27.692
28.096
30.815
28.432
33.231

31.275
30.682
30.619
30.681
41.309
43.109
43.974
42.992
58.311

50.694
49.495
50.272
49.495
59.359
63.632
60.039
61.304
80391

Table 4
Utility losses versus optimal strategy (L = 200).

The table reports the utility losses, measured as percentage points of
initial wealth, that one is willing to give up to switch from a given
strategy to the optimal dynamic one in the complete information model
when the moving average (MA) lag length L is set equal to 200 days.

Strategy

7=10
Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MA1
MA2
MA3
Linear rule

7 = 20
Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MAI
MA2
MA3
Linear rule

Fixl
Fix2
Fixl + MA
Fix2 + MA
Pure MA
MA1
MA2
MA3
Linear rule

Dividend yield

8.845
7.904
8.125
7.896
15.181
17.285
16.383
16.183
14.801

16.680
15.171
14.992
15.168
26.569
30.642
29.272
28.756
33.409

30.369
28.027
27.341
28.021
45.315
49.746
48.755
47.520
61.541

Term-spread

3.895
1.568
2.497
1.547
11.526
14.099
13.642
13.385
13.702

7.609
3.112
4.460
3.040
21.435
24.809
24.662
23.694
30.891

14.613
6.129
6.975
5.887
36.686
40.360
41.713
39.032
58.711

Payout ratio

20.856
18.061
18.145
18.059
24.846
25.881
28.193
26.047
33.231

31.275
30.682
30.521
30.682
38.720
41.252
41.506
40.591
58311

50.694
49.495
50.694
49.495
55.404
59.826
56.518
57.957
80.391

completely when a small degree of predictability exists in
the data. In a continuous-time version of their model,
this is apparent when we examine the losses of Fixl
versus the optimal dynamic strategy. However, the
optimal dynamic strategy is difficult to identify, while
the fixed rules are more practical and easy to apply. Even
if the optimal dynamic rule is available, the predictive
variable(s) might not be available at all time frequencies
while the stock price can be observed virtually continu-
ously during trading hours for implementing any MA-
based strategies.

Second, Fix2 performs better than Fixl, which is not
surprising because Fixl is optimal only under the iid
assumption. The superior performance varies across
predictive variables and achieves the best level when
the term-spread is taken as the predictive variable. The
performance difference is of significant economic impor-
tance even when T=10. This suggests that ignoring
predictability entirely can lead to substantial economic
losses even within the class of fixed strategies.

Third, the MA rule adds value to both Fixl and Fix2,
and Fix2+MA is the best suboptimal strategy. For Fixl, the
MA improves its performance substantially by cutting the
losses by at least 1-2% as long as T> 10. However, the MA

provides only small improvement over Fix2. This does not
suggest necessarily that the practical value of the MA rule
is small. In practice, it is extremely difficult to know what
process the stock follows and what variables drive the
market from time to time. However, the long-term stock
return and volatility could be estimated with little error
due to the long historical data. This means that Fixl is a
feasible strategy while Fix2 might not be, at least to a
sizable number of investors. By the same token, the
dynamic optimal rule is difficult to identify in practice.
Currently, index funds hold about one-third of the stocks.
Such investors are likely to invest their money with
allocations that resemble Fixl, not Fix2. In addition,
popular portfolio optimization strategies (see, e.g., Litter-
man, 2003; Meucci, 2005) are more like Fixl than Fix2. To
the extent that this is true, the MA rule can have value.
Theoretically, uncertainty about the degree of predict-
ability can make the MA rule add value to the optimal
dynamic rule, too, when the prior is not informative
enough. There might be countless other reasons for the
usefulness of the MA rule because so many successful
practitioners put their money behind it in.reality.

Fourth, the lag length makes only a small difference in
the results except for the pure MA rule (and the ad hoc
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ones), which by definition depends on L more heavily.
Because the fixed rules are independent of I, their values
are the same across Tables 3 and 4. For both Fix1 + MA
and Fix2+MA, their values change only from 8.177% and
7.895% to 8.125% and 7.896%, respectively, in the dividend
yield model with r=10. When 7 = 40, the values are
larger and so are the differences. But the larger differences
are still less than 0.5%. In contrast, for the PureMA, the
largest difference is as high as about 5%, occurring at
T=40.

Fifth, PureMA rules are much worse than other rules
(except the ad hoc MA ones). For example, when the
dividend yield is taken as the predictive variable and
L = 50, it has a loss about twice as large as the fixed rules
when T = 10. The qualitative results change little as T
increases. When the term-spread is taken as the predictive
variable, the difference can be four times as large. The
least difference, still over 5%, occurs when the payout ratio
is taken as the predictive variable. The results suggest
strongly that one should not use MA alone, but only use it
in conjunction with the fixed strategies.

Sixth, the ad hoc MA rules (MAI, MA2, and MAS)
perform worse than PureMA. Theoretically, this is
expected because the latter is optimal among pure MA
rules. However, what is of interest here is that the under-
performance can be of significant economic importance.
Because these ad hoc rules perform poorly and do not add
much information in comparison with other rules once we
keep PureMA, we eliminate them henceforth.

Seventh, the linear rule under-performs the fixed rules
and hence also their combinations with the MA. However,
it outperforms the PureMA as well as the ad hoc MAs
when T = 10, but it does poorly when T = 20 and 40. The
results are not surprising. As shown by Brandt and Santa-
Clara (2006) in their Table 1, the linear rule works well
with 1% errors when the investment horizon is two years
or so, but the error can increase to the order of 10% when
the horizon lengthens to 10 years. There are two reasons
that this happens. First, the linear approximation worsens
as T gets greater. Second, the fourth-order polynomial
approximation to the power-utility becomes worse as the
horizon lengthens. Similar to the case with the ad hoc MA
rules, for brevity, we no longer report the linear rule in
what follows.

Now, let us examine the impact of using either
arithmetic MAs or the ex-dividend stock prices in the
computation of various strategies. To see the influence of
the first, Table 5 reports the same valuation as Table 4
except that it replaces the previous geometric MAs with
the arithmetic ones. The results are little changed. For
example, when T = 40 and when the dividend yield is
taken as the predictive variable, Fixl + MA has a value of
27.378%, which is virtually identical to the earlier value
of 27.341%. The largest difference occurs for PureMA,
which is still less than 0.5%. To see the effects of dividends,
Table 6 computes the losses of Table 4 by using the
ex-dividend prices instead, with an assumed annual
dividend yield of 3%. Although the differences are larger
now, they are confined only to PureMA. They make no
difference whatsoever for other GMA strategies. Overall,
we find that our earlier conclusions are robust to using

Table 5
Utility losses versus optimal strategy for arithmetic average.

The table reports the utility losses, measured as percentage points of
initial wealth, that one is willing to give up to switch from a given
strategy to the optimal dynamic one in the complete information model
when the moving average (MA) lag length L is set equal to 200 days, and
when it is computed based on the arithmetic average instead of the
geometric average.

StrategyDividend yieldTerm-spreadPayout ratio

T=10
Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA

8.845
7.904
8.091
7.901
15.074

3.895
1.568
2.514
1.547
11.668

20.856
18.061
18.153
18.070
24.951

T = 20
Fixl
Fix2
Fixl + MA
Kx2 + MA
PureMA

16.680
15.171
15.036
15.166
26.873

7.609
3.112
4.391
3.053
21.355

31.275
30.682
30.531
30.719
38.917

Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA

30.369
28.027
27.378
28.017
45.715

14.613
6.129
6.697
5.963

36.287

50.694
49.495
50.660
49.641
55.856

Table 6
Utility losses versus optimal strategy with ex-dividend price.

The table reports the utility losses, measured as percentage points of
initial wealth, that one is willing to give up to switch from a given
strategy to the optimal dynamic one in the complete information model
when the moving average (MA) lag length L \s set equal to 200 days, and
when it is computed based on the ex-dividend price instead of the cum-
dividend price.

StrategyDividend yieldTerm-spreadPayout ratio

T=10
Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA

8.845
7.904
8.153
7.898
16.085

3.895
1.568
2.737
1.521
13.215

20.856
18.061
18.149
18.064
25.741

7 = 20
Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA

16.680
15.171
15.164
15.162
28.607

7.609
3.112
4.517
3.058
23.031

31.275
30.682
30.559
30.728
40.078

Fixl
Fix2
Fixl + MA
Fix2 + MA
PureMA

30.369
28.027
27.379
28.028
47.172

14.613
6.129
6.735
6.023

38.688

50.694
49.495
50.820
49.683
56.718

either arithmetic averages or ex-dividend stock prices in
the implementation of the fixed rules and their combina-
tions with the MA.
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Table 7
Performance statistics for dividend model.

The table reports performance statistics for various strategies in the
complete information model when the moving average (MA) lag length I
is set equal to 200 and when the predictive variable is the dividend yield.
The annualized mean is the annualized expected holding period return
(HPR), the annualized SD is the standard deviation of the annualized
HPR, the Sharpe ratio is defined as the annualized mean excess HPR
divided by the annualized SD, and MaxDD is the maximum drawdown.
Other variables are defined similarly with the rates computed based on
continuous compounding.

Statistics

T=10
Annualized mean
Annualized median
Annualized SD
Annualized Sharpe
Skewness
Kurtosis
MaxDD

Annualized mean
Annualized median
Annualized SD
Annualized Sharpe
Skewness
Kurtosis
MaxDD

T = 40
Annualized mean
Annualized median
Annualized SD
Annualized Sharpe
Skewness
Kurtosis
MaxDD

Fixl

8.703
8.708
5.386
0.688
-0.008
2.950
31.349

8.793
8.768
3.922
0.967
-0.108
2.891
37.359

8.825
8.872
2.889
1.324

-0.016
3.009
42.718

Fix2

8.563
8.568
5.081
0.701
-0.008
2.950
29.511

8.611
8.588
3.646
0.990
-0.108
2.891

34.640

8.619
8.665
2.663
1.359

-0.016
3.009
39.299

Fixl + MA

8.578
8.657
5.102
0.701
-0.057
2.967
30.181

8.652
8.630
3.711
0.984
-0.150
2.934
36.046

8.682
8.739
2.737
1.345

-0.046
2.999
41.349

Fix2 + MA

8.531
8.539
5.010
0.705
-0.022
2.956
29.217

8.573
8.566
3.590
0.995
-0.121
2.902
34.288

8.579
8.625
2.622
1.365

-0.025
3.006
38.921

PureMA

7.328
7.094
4.229
0.551
0.241
3.063

20.949

7.442
7.282
3.043
0.803
0.183
2.830
24.130

7.442
7.367
2.161
1.130
0.205
3.161

27.387

Finally, to understand better the strategies, it is of
interest to examine their performance statistics, i.e., the
annualized mean, median, standard error, and Sharpe
ratio, as well as the skewness, kurtosis, and maximum
drawdown (MaxDD). The annualized mean is the annual-
ized expected holding period return (HPR), the annualized
SD is the standard deviation of the annualized HPR, and
the Sharpe ratio is defined as the annualized mean excess
HPR divided by the annualized SD. Other variables are
defined similarly with the rates computed based on
continuous compounding. Table 7 reports the results
when the dividend yield is used as the predictive variable.
The returns on both Fixl and Fix2 are generally greater
than those of their MA combinations, but their standard
deviations are larger, too. Consequently, the Sharpe ratios
of the fixed rules are smaller than those of the latter. This
is consistent with the results from utility maximization.
As expected, the Sharpe ratios increase as the horizon
lengthens. The skewness and kurtosis for both the fixed
strategies and their combinations are small. In contrast,
the PureMA has relatively higher values. The same pattern
also holds for the kurtosis. The MaxDDs, the average
MaxDDs over the simulated paths of the model, are
substantial for all the strategies, though those for the

Table 8
Comparison under parameter uncertainty (T = 10).

The table reports both the utilities of the optimal learning, the
standard fixed, Fixl, and its optimal combination with the moving
average (MA) strategies, Fix1+MA, and the associated certainty-
equivalent losses, measured as percentage points of initial wealth,
relative to the optimal learning strategy. The MA length is 200 days and
investment horizon is T set equal to 10 years. The predictability
parameter ft is captured by a mean-reverting process starting from its
long-term level /J0 = 2.0715. The standard normal prior on /!„ has a prior
mean b0 and standard deviation ,/Vo".

^

1
2
3
4

bo = 4
1
2
3
4

bo = 6
1
2
3
4

b0 = 7
1
2
3
4

Uop,

1.137
1.138
1.134
1.121

1.147
1.149
1.145
1.131

0.999
1.015
1.030
1.035

0.888
0.915
0.942
0.961

OR,,

1.014
1.014
1.014
1.014

1.014
1.014
1.014
1.014

1.014
1.014
1.014
1.014

1.014
1.014
1.014
1.014

IW-A

1.020
1.020
1.020
1.020

1.020
1.020
1.020
1.020

1.020
1.020
1.020
1.020

1.020
1.020
1.020
1.020

CEfixi

12.270
12.402
11.961
10.671

13.271
13.459
13.071
11.690

-1.549
0.090
1.511
2.050

-12.640
-9.929
-7.199
-5379

CEFix,+M*

11.670
11.802
11.361
10.071

12.671
12.859
12.471
11.090

-2.149
-0.510
0.911
1.450

-13.240
-10.529
-7.799
-5.979

PureMA are much smaller.13 It seems that one has to be
prepared for the big ups and downs in long-term
investments. Nevertheless, both Fixl + MA and Fix2 +
MA have smaller drawdowns than their counterparts.
Similar results, omitted for brevity, are also obtained
when either the term-spread or payout ratio is used as the
predictive variable.

4.2. Comparison under parameter uncertainty

As in Xia (2001), we assume p^ to be zero. Then,
neither Fixl nor Fixl + MA depends on the unknown
parameter /?, and ^JJX reduces to the optimal fixed rule
^x2- In addition, for the mean-reverting process on /?, we
assume /Jt starts from its calibrated long-term mean,
/?„ = 2.072, and set the reverting speed 1 = 0.115 and the
volatility af = 1.226.

The results are provided in Table 8 with the dividend
yield as the predictive variable, I = 200 days and T = 10
years. The first two columns are values for the prior mean

13 The same magnitude of drawdowns also shows up in the standard
geometric Brownian motion model without the predictive component of
our model here. Magdon-Ismail, Atiya, Pratap, and Abu-Mostafa (2004)
provide an analytical analysis of the MaxDD for a Brownian motion.
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and standard error, the third to the fifth columns are the
expected utilities associated with the optimal learning
strategy, Fix1 and Fixl + MA, respectively. The last two
columns are the CE or utility losses (in percentage points)
of the Fixl and Fixl + MA relative to the optimal learning
one. Because ppx = 0, the performances of both Fixl and
Fixl + MA are independent of priors on /?. The perfor-
mance of the optimal updating rule depends on the prior.
When the prior mean b0 = 0. both Fixl and Fixl + MA
under-perform the optimal learning rule substantially,
with losses from 10.67% to 12.40% and 10.07% to 11.80%,
respectively. Among the priors, ^/VQ = 2 is clearly the best
one, and hence it is not surprising to see that the
associated loss is the largest. While it is unclear ex ante
whether or not ,/Vo" = 1 is better than ,/Vo" = 3, the former
turns out to provide a higher expected utility for the
optimal learning. The reason is that the model seems to
penalize large prior means b0 more than small ones
relative to the true /J0. This is why the losses become
greater when ^/VQ" further increases from 3. When the
prior mean bo = 4. the results are similar qualitatively.
However, when the prior bo = 6, which is not too
informative about the true y?0, the optimal learning rule
can now perform worse than either Fixl or Fixl + MA
when ^/Vo" = 1. When the prior mean moves further away
at bo = 7, the losses increase substantially to over 10%. The
optimal learning also depends on the investment horizon.

Table 9
Comparison under parameter uncertainty (T = 5).

The table reports both the utilities of the optimal learning, the
standard fixed, Fixl, and its optimal combination with the moving
average (MA) strategies, Fixl + MA. and the associated certainty-
equivalent losses, measured as percentage points of initial wealth,
relative to the optimal learning strategy. The MA length is 200 days and
investment horizon is T set to five years. The predictability parameter
P is captured by a mean-reverting process starting from its long-term
level /?0 = 2.0715. The standard normal prior on /?0 has a prior mean bo
and standard deviation VT^.

u«l/Fixl

b0-0
1 0.503
2 0.504
3 0.501
4 0.491

1 0.514
2 0.515
3 0.511
4 0.500

0.457
0.457
0.457
0.457

0.457
0.457
0.457
0.457

0.460
0.460
0.460
0.460

0.460
0.460
0.460
0.460

4.590
4.681
4.381
3.470

5.770
5.799
5.399
4.349

4.231
4.322
4.021
3.111

5.411
5.440
5.040
3.990

bo = 6
1
2
3
4

b» = 7
1
2
3
4

0.404
0.414
0.423
0.424

0.319
0.338
0.355
0.366

0.457
0.457
0.457
0.457

0.457
0.457
0.457
0.457

0.460
0.460
0.460
0.460

0.460
0.460
0.460
0.460

-5.301
-4.240
-3.409
-3.259

-13.750
-11.920
-10.149
-9.090

-5.660
-4.599
-3.769
-3.618

-14.109
-12.279
-10.508
-9.450

Table 10
Comparison under model uncertainty.

The table reports the utility losses of the estimated Fixl and Fixl + MA
relative to the optimal strategies derived from the three predictive
models with the dividend yield, term-spread and payout ratio as the
predictive variable, respectively. In each of the three panels, the model
associated with the variable name of the panel is assumed to be the true
model, while the other two are the wrong models. The moving average
(MA) lag length L is 50 or 200 days, and the investment horizon T is set
equal to five, 10 and 20 years, respectively.

Investment Fixl + MAFixlUncertain models

Horizon1=50 1 = 200Wrong Model 1 Wrong Model 2

Panel A: Dividend yield
T = 5 5.228 5.333 5.616
7=10 13.558 13.359 13.989
T = 2028.294 27.848 28.366

Panel B: Term-spread
T = 5 1.361 1.420 1.833
T=10 3.892 3.652 5.408
T = 20 8.735 8360 11.264

Panel C: Payout ratio
T = 5 3.372 3.642 4.190
7 = 10 12.313 12.724 16.431
7 = 20 34.936 35.467 40.112

6.593
15.439
31.009

6.593
15.439
31.023

17.288
38.945
70.774

17.288
38.945
70.774

9.868
23.433
50.346

9.868
23.433
50.337

As the horizon shortens, the optimal learning becomes
worse, as expected, as shown in Table 9 with T = 5 years.
Overall, to the extent that uncertainty about predictability
is high and the prior is not very informative, the widely
used fixed strategy appears viable as it can outperform the
optimal learning one. However, the MA rule can always
add value to this fixed rule. Therefore, the MA rule or
technical analysis seems capable of capturing information
on the market that is useful to investors.

4.3. Comparison under model uncertainty

To assess the effect of model uncertainty, we assume
that the true stock price process is one of the three
calibrated models, but this is unknown to the investors.
There are three cases to consider, each of which
corresponds to one of the three models as the true one,
respectively.14 In the first case in which the model with
the dividend yield as the predictive variable is assumed
the true data-generating process, Panel A of Table 10
reports the utility losses by using the estimated Fixl + MA
and the optimal trading strategies based on the wrong
models, the second and third one, respectively.15

14 Model uncertainty is a real issue in practice as witnessed by the
recent collapse of the supposed smart traders, the top investment banks.
Zhou and Zhu (2009) examine the empirical performance of various
GMA rules over the past century, and find that, if an individual had
followed the GMA rule, his portfolio would have avoided much of the
financial crisis, and could be better still if using some more technical
rules.

15 Although not reported, the estimated Fixl + MA differs only
slightly from the true one. For example, in the first case, when T = 5 and
L = 50, their difference is less than 0.5%.
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Model 1 Dividend yield

47

46.8

46.6

1000 2000 3000
L (days)

Model 2 Interest Rate

40005000

10002000 3000

L (days)

Models Payout ratio

40005000

10002000 3000

L (days)

40005000

Fig. 1. Effect of lag length (L). The figure plots the certainty-equivalent (CE) losses versus the moving average lag length measured in days in the three
predictive models. MA: moving average; GMA: generalized moving average.

As before, the losses here are measured relative to the true
optimal strategy. When 7" = 5, the largest loss of Fixl +
MA is 5.333%, far smaller than 17.288%, the largest of
the wrong optimal strategies. It is also smaller than
6.593%, the smallest of the latter. As investment horizon
increases, the loss increases. The same conclusion also
holds when the assumed true mode is either term-spread
or payout ratio as the predictive variable, respectively, as
indicated by the results in Panels B and C of the table.

An open question is how well Fixl + MA compares
with the estimated fixed strategy, i.e., ̂x = i)0/ff2 with B0

and a2 as the moment estimators, which is denoted as
Fixl. The utility losses associated with Fixl are reported in
the fourth column of Table 10. They are always larger than
those associated with Fixl + MA, and they are substan-
tially so in many cases. This indicates that Fixl + MA
outperforms Fixl not only when the true model is known,
as is the case in Section 4.1, but also when the true model
is unknown, as is the case here.

Overall, our results show that, while Fixl + MA has
lower utility than the true optimal one, it outperforms all
the optimal strategies when they are derived from wrong
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models. Given that the true model is unknown and
difficult to identify by investors in the real world, the
robustness of Fix! + MA, or of the technical analysis in
general, makes it a valuable tool in practice.

4.4. The effect of lag lengths

The analytical optimal lags are available for both the
optimal GMA and the Fix1 + MA strategy. Fig. 1 plots the
utility losses of these two strategies relative to the optimal
dynamic one at various lag lengths when T = 40. Because
of differences in #lt as predicted by Proposition 4. the
optimal lag in the term-spread model is the smallest and
becomes the largest in the payout ratio model. There are
in addition two interesting facts. First, the utility losses
are much greater than those reported in Tables 3 and 4.
This is expected because here y = 1, while y has a value of
2 in the tables. The smaller the y, the more the risk taking,
and so the greater the impact of the various stock
allocation strategies on the expected utility. Second, the
performance across different lags do not vary much for
Fixl + MA, implying that our earlier utility comparisons
are insensitive to the use of the optimal lags. However, the
optimal GMA rule is substantially more influenced by the
use of the optimal lag than Fixl + MA. But this does not
affect our earlier results, because numerical studies on
this rule are not provided due to the unavailability of its
solution in the power-utility case.

5. Conclusion

Although technical analysis is popular in investment
practice, few theoretical studies on it are available. The
empirical evidence is mixed, and a lack of understanding
exists on the economic rationale for its usefulness. In this
paper, we provide a theoretical justification for an investor
to use the MA rule, one of the widely used technical rules,
in a standard asset allocation problem. The theoretical
framework offers a number of useful insights about
technical analysis. First, it solves the portion of investment
a technical trader should allocate into the stock market if
he receives a technical buy signal, while previous
researchers determine it in ad hoc ways. Second, it shows
how an investor might add value to his investment by
using technical analysis, especially the MA, if he follows a
fixed allocation rule that invests a fixed portion of wealth
into the stock market, as dictated by the random walk
theory of stock prices or by the popular mean-variance
approach. In particular, our paper explains why both risk
aversion and the degree of predictability (quality of signal)
affect the optimal use of the MA. Third, when model
parameters are unknown and have to be estimated from
data, our asset allocation framework illustrates that the
combination of the fixed rule with the MA can even
outperform the optimal learning rule, which is prior
dependent, when the prior is reasonable and yet not too
informative. Finally, when the true model is unknown, as
is the case in practice, we find that the optimal GMA is
robust to model specification and outperforms the
optimal dynamic strategies substantially when they are

derived from the wrong models, suggesting that technical
analysis provides useful information for asset allocation
especially when we are uncertain above the driving force
of the market.

For tractability, our exploratory study assumes a
simple predictive process for a single risky asset and
examines the simplest MA rule. Studies that allow for
both more general processes (such as those with jumps,
factor structures, and multiple assets) and more elaborate
rules are clearly called for. Broadly speaking, asset pricing
anomalies, such as the momentum effect, can also be
regarded as profitable technical strategies that depend on
historical price patterns. Questions remain open: What
underlying asset processes permit such anomalies? What
are the associated optimal investment strategies? Further
issues to address are how past prices and trading volumes
reveal the strategies of the major market players, with
their incomplete and complementary information, and
how their interactions determine asset prices. All of these
are important and challenging topics for future research.

Appendix A

AI. ProofofEqs.(15),(27)and(28)

Let y, = log St. Then the model for the predictive
variable and stock price process are

(113)
- o-s2/2) dt + <7S dBt,

where (Zt, Bt) is a two-dimensional Brownian motion with
correlation coefficient p.

To rule out any explosive behavior, we assume 61 <0
throughout, which is consistent with empirical applica-
tions. Furthermore, we assume that Xt is a stationary
process for t>0. Integrating Eq. (113) forXt, we have

(114)

It follows that Xt is normally distributed with mean and
covariance

(115)

(116)

respectively, where EX0 and V(Q) are the mean and
variance of XQ. Then, the steady state mean and variance
of Xt can be obtained by taking t -* +00 in Eqs. (115) and
(116), i.e.,

and

cov(Xt,Xs) = V(Q)--(e-

and

(117)

(118)

The necessary and sufficient condition for Xt to be
stationary for £>0 is that XQ start from the steady
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state, i.e., X0 is normally distributed with mean X and
dim vdiidiiLc v(u;=v,x. uiiuei me Mdiiuiidi
tion, the first two moments Eqs. (115) and
characterize the distribution of X, can thus be
as

#0

1

and

cov(Xt,Xs) = — ̂-efll|t~s|.
1

uy LUIIUI-
(116) that
simplified

rT off /ee'r-l \ / /Y RT\ " I T 1
B yo <x(,B7)dt fl] (^ ff] rj.(129)

where (•, •) denotes the covariance operator conditional on

(119)

(120)

With initial conditions X|t=0 = Xo, y\o = yo. we inte-
grate Eq. (113) to obtain

(
a rt

Xt = Xoe"'' - £kl - e8'') + ffx / e^'̂ dZSl
01 Jo

rt

yt=y° + J0 (^° + ̂X* ~ ̂ /2) ̂ + ffjBf'

/ •! *11 \)

Let Mt = logCt, where Ct is the geometric MA at time t,
then

Mt — -j- / ys ds.(122) V » **•*/

To derive Eq. (15), we note, under constant holding £flx2.
the wealth process is

log WT = log W0 + rT + £nx2(/i0 - r - fiwof /2)'
fT

'Jo

Then, optimizing over £Rx2 the power-utility

FfpYnfYI •vllnffW-rll i v cll-APU ' r) 1US " 7VJ

pvnm vVlnfl^i l rT — eAp||l y )(IO& VV Q -t- r I

Cfix2l/*o ?nx2 j/ ; >\ fT \

xEexp 1 Crix2^i / Xt dt + ^fix2crsBr j (1 - y) 1 ,

we obtain the solution

(Ho — r) + /iiE hs/JXtdt
*« L' J

yirf — (1 — y)(^2>\ 2^, <7SB) '

where

>\ ivar[/ Xtdt]
1 Uo J

and

1 r rT l B = fcov Axtdt,BT.

r
(123)

(124)

(125)

(126)

(127)

information at time 0 throughout theappendix for
brevity, and we have made use of the following fact that
for t<T

rt

'In * •/O

= <rx f pee'(c~s)ds = ~^-(ee't -1).
Jo «1

To derive Eqs. (27) and (28), taking
Eq. (121) and making use of Eq. (120), we

Eyf = yo + (1*0 + 1*1% - of /2)t
and

EMt = y0 + (//0 + /i,X - <7s2/2) (t - ̂

when t>L These results allow us to
following second moments for t>L:

2

(Xt,Xt_,.) = -^-e"'1.

C f'~L t Jo s' * Jo
,-t-L ft

Jo ' s' Jt-i '

+ ffxasp£~le»^-»dS

^-^--^-^

ft—L rt
(Xt,yc i) = / /i^Xs.XtJds + ffxffj / ee'(

70 70

_ /^cr2 ffxffsp\ e,L ,e,t-.

\20? 01 )

and

/ 7 \ffs ' e2 0i T
\i ' /

/Gu,0x)2 2,̂0-50-^ eit

(130)

expectation in
obtain

(131)

(132)

compute the

(133)

'— ><dWs,Bt>

.X^ds

^(1-e— ).

(134)

^'(dWj.Bt-i)

MQC'l
l ijjj

/ /i,(Xs,Bf)ds

i mfii

With Eqs. (121) and (120), /\d B can be simplified as

fr , fT j f2 /-7' A7
A= I dt I ds(XtXs) = — ̂- I dt I (

Jo Jo 20,70 J0

where we have used the fact (Xs,Bt> = ax£ e6>l(s~u)pdu,
for s^t, an equality

(137)
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and another equality

rt
/Jt-L

20?
(138)

Next, we compute the following second moments
involving Mt using Eqs. (134) and (138):

(139)

and

_ -2

~
A

2;

(140)

Finally, to compute {Mt,Mt), we note first

1 /•' 1 /•t
t = T / ys ds = T / [yt_! + (yf_1+s - yt_L)] ds

L 7t-l L 70

(141)

where yt_1+s = yf_i+s - yt-i- Then, we can write (Mt, M,) as

= <Mi,Mi> + j-J (y,_t,yt_i+s) ds - (y,.L,y,.L), (142)

where Mt = (\/t)f0ysds. Using Eq. (138), we obtain

. . i ft ft
(Mt.Mt) = -=• / / (ys,yu)dsdu

t JO JO

x 1-
2e9'' 2

(143)

For the term fa(yt-i,yt-i+si d$- ^Q- (138) can be used for its
computation. Hence, we get the last term for determining
the covariance matrix of the trio (Xt,yt,Mt) as

.
I

26]

- e^ 4. 0,ie9'1) - - (1 -

Summarizing above, we have Lemma 1.

(144)

Lemma 1. For t>L,the trio (Xc,yt,Mt) are jointly normally
distributed with mean n = (ni, n-2, n$) given by

n,=-£. (145)

(146)

(147)

and covan'ance matrix D = (D.y) given by

20,
(148)

(149)

20?

ffxffsp _

(150)

(151)

(152)

_

V 20? 0?

_ -fl.rv
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20?0
x(1-e9ll-e°l(t-l) + e9lt). (153)

With Lemma 1, the proof of Eqs. (27) and (28) follows
from Lemma 2.

Lemma 2. Let Xt = Xr - X and Zt = y, - Mt. Then (Xt, Zt) is
normally distributed with mean mz = (ni,nz — n3), and
covariance Cz = (C|) given by

Cf1=D1i. (154)

(155)

(156)

(157)

(158)

Proof. It is sufficient to prove only Eq. (158), which is
generally true for any jointly normal random variable
(x,z), with mean (mx,mz), standard deviation (ax,az), and
correlation p, i.e..

and

Cf2 = D12 - D13.

Moreover,

ana1

~ )• ®z /

After standardization.

x =x-mx

and

_
~

we can write

x = pz+

(159)

(160)

(161)

(162)

where e is the standard normal variable that is indepen-
dent of z. Generally, for m2^0, which is satisfied by our
application, where E[Zt] = E[yt] - E[Mt]>0. Therefore, we
have

(163)

This implies that

E[x1zs,0] = E[x] - E[x1zs0] =

which proves Eq. (159). D

(164)

A.2. Proof of Propositions 7-3

All three GMA strategies involve MA, which is only
well defined for t>L When t^L, we define them here
as the optimal fixed strategy ^x2- which is the same
as £flx1 under the log-utility. Thus, the complete GMA
rule is

GMA(St> (
= flxl

fort>L,
for

(165)

This makes comparison across the strategies fair because
they all start from £fiXl . For example, if the pure MA had
started from zero, it would surely under-perform the other
two over [0,L] assuming a positive risk premium.
Analytically, the same starting point makes the expres-
sions simpler. Clearly, for a fixed L, the initial value has
little impact, if any, when T is large. This is also consistent
with the numerical results in Section 4.1. However, when
study optimal lags, the initial value does matter because
the optimal lag of a pure MA strategy can be close to T
(see Section 4.4).

With any of the GMA strategies, the key is to maximize
the expected log-utility, which follows from Appendix A.1
and Eq. (32), as a function of £f-ix and £mv,

UCMA tf BX= log Wo + rT +

(166)

where bi and b2 are defined in Eqs. (27) and (28).
To prove Proposition 1, we need to maximize

UCMA(£fix,£mv) with respect to both £fix and £mv. The
first-order conditions are

and

= 0

= 0.

which implies

H0 + /i,X - r - <

and

= 0

= 0.

(167)

(168)

(169)

(170)

With some algebra, we obtain the optimal solution

Cftv — ...•'• — f J l\

and

^ = b2(i^b2)ffr (172)
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Because the value function for log-utility associated with
i is

and

-T,(173)

we obtain Eq. (35) by substituting this into l/GMA(£fix. £mv)
evaluated at the optimal solution (%r,x,£*mv).

To prove Proposition 2, we simply let ijfix = ^lx, and
optimize l/GMA(£nxi > £mv) over <fmv alone. Similar algebra
yields the solution. The proof of Proposition 3 follows
analogously.

A3. Proof of Eq. (64)

To maximize U(y) of Eq. (59) over £mv, it is equivalent
to maximize

max/(£mv) = £mv(4
Cmv

The first-order condition is

/'(£nw) = <t>o + 2<Ai £mv + 3<kf L + 4<j>3?mv = 0.

which in turn can be transformed to

y3 + py + Q - o,
where

(174)

(175)

(176)

(177)

with p and q given in Eqs. (65) and (66). Numerical
computations show that, for a wide range of parameters of
interest, we have

<J2+^->0. (178)

The solution to cubic equation (176) is known as Cardano
solution (e.g., Curtis, 1944), which is given by

p\q+Vq2+4p3/27
2

-1/3

(179)

Under condition equation (178), this is the unique real
root. Hence

(180)

which is the same as Eq. (64). Furthermore, it can be
verified that <£, <0, and so this solution to Eq. (175) is a
maximum.

A.4. Proof of Proposition 4

To prove Proposition 4, we need to optimize Eqs. (35),
(42) and (45) over L Consider U'CMM - U*r,x, and
t/cMA2 - Ufixl, and ignore some constants, the target
functions become

(181)

(182)

where Vi and V2 are defined accordingly. Because V, and
V2 are T independent, so are their maximum over L As T is
large, 1 — L/T can be ignored, and hence we need only to
maximize V, and V2.

The first-order condition for maximizing V2 is

_2b-[b\b2 -b,b'2 _Q
(183)

Substituting those approximate equations (105) and (106)
for bi and b2. we have

2h'(x)f(Ax) - 2Axh(x)f (Ax) -= 0.(184)

This is a transcendant equation that is difficult to solve
without further simplifications. It can be shown that the
third term is dominated by the first one when x< 1, and by
the second one when x>1. Ignoring the third term, we
need only to optimize

b, = h(x) -/(Ax).

The Taylor expansion for h(x) is

,, , xx3 x5

(185)

(186)

which implies that Eq. (185) can be approximated by

3 «5\ A2^
(187)

Taking derivative with respect to x and letting it be equal
to zero, we obtain, after ignoring higher-order terms,

(L £U_!
l24+6r

(188)

The smaller root of the above quadratic equation, which
corresponds to the maximum, is the solution for the
second case of Proposition 4.

To provide solution for the first case, we now maxi-
mize V]. Its denominator can be approximated by N(Ax>
N(—Ax), and hence

i /i2(x)/2(Ax)
N(Ax)N(-Ax) C-N(Ax)L(189)

where we have used the approximation N(-Ax)« C -/(Ax)
for Ax>0 and large. Similar to the earlier case, we can
ignore N(AQ, and hence the target function becomes
h(x) • v7(Ax)- This has the same form as Eq. (185) with
A/V2 plays the role of earlier A Therefore, the solution
follows.
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Finally, to derive Eq. (Ill), we need to maximize
U3 = ^GMAS -((Hs~ r)2/2oiH" Similarly, this can be re-
placed by a target function

= 1̂1 CAh(x)f(Ax) + CsN(Ax)] •

(190)

where the last approximation is due to the dominance of
the second term in the bracket. The first-order condition is

Y2 \ ] _

10, i
xN(Ax) = 0.(191)

Because there is only one solution, we can verify that

(192)

(193)

and

|0,|T
0,(194)

and hence we can reduce the first-order condition to
Af(Ax) as (2/|0,|r)x. This implies Eq. (111).

AS. Computing the ML estimators

Following Huang and Liu (2007), the continuously
compounded return Rt+, = log(St+i/St) and Xt+, are
jointly Gaussian, and the log-likelihood function, condi-
tional on X0, can be written as

= - 2 (2 log 2?r + log <T2 + log a\ log(l - p?2))

1 T (ID v \
I \—* I ("t — ̂11 — Ol2-Ar_l)

— —j 2~\Zjl 2 —

2(R, - a,, - a12Xt_,)(Xt - bn - b,2Xt_,)

where 0 = (a\\,ai2,bu,bu,a\,a2,pn) with

(195)

(196)

(197)

(198)

(199)

and

(200)

(201)

(202)

Let V be a T x 2 matrix formed by observation on Rt and
Xt, and Z be formed by a T-vector of ones and the T values
of Xt_i. Define

B =

and

"(

(203)

(204)

Then, the estimator of B is B = (X'Xr'X'y, and that of T is
r = (y-XB)'(Y-XB)/r. The estimator for the original
parameters, such as |I0, can be backed out from these
estimates.

A.6. The linear rule

Ai't-Sahalia and Brandt (2001) and especially Brandt
and Santa-Clara (2006) provide linear portfolio rules to
approximate the optimal dynamic strategy. Following
Brandt and Santa-Clara (2006), consider linear portfolio
rules of the following form:

J = 1, • •., H,(205)

where H is the investment horizon. Their idea is to reduce
the multi-period problem to a single-period one by
expanding the asset space with "conditional managed
portfolio" and "timing portfolio" according to Eqs. (12)
and (25) in their paper. Our model has one risk-free asset
and one risky asset. Denote here Rf = 1 + r/ Af as the gross
return on the risk-free asset and rt = R, - Rf the excess
returns on the risky asset. Then, the expanded asset space
can be written as

(206)

which is an 1 x 2H vector.
The multi-period utility maximization problem can

thus be approximated by

0, f ' t~>t+

where fft, 1 x 2H, is the single-period portfolio position in
the expanded asset space. To solve this problem, Brandt
and Santa-Clara (2006) suggest a further approximation
by replacing the power utility with its fourth-order
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expansion, i.e.

Et[u(Wt+H)] «

(208)

As a result,

0; * - (Et[u"(WrR? Xi

(209)

Based on the predictive model, the above moments can be
computed via simulations, and hence the implicit expres-
sion for the optimal weights can be solved recursively.
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